
MorphAdorner
A Java Library for the Morphological Adornment of English Language Texts

Version 2.0.1. October 1, 2013.

Copyright © 2007, 2013 by Northwestern University.

– DRAFT – DRAFT – DRAFT --

Table of Contents

Part One: Introduction..1
Introduction to MorphAdorner...1
How MorphAdorner Works..2

How Do I ...3
MorphAdorner Client Installation..4

Quick Setup..4
File Layout of Morphadorner Client Release...4
Installing and Building MorphAdorner Client...5
Documentation...6
Running MorphAdorner...6

Modification History..7
MorphAdorner License..8

Third-party Licenses...8
MorphAdorner Support..12
Credits..12
Citing MorphAdorner...12

Part Two: Adorning A Text...13
Java OutOfMemory Errors...15
Tokenizing an XML Text..15

Part Three: Configuring MorphAdorner..18
MorphAdorner Command Line..18
MorphAdorner Configuration Settings..20

Part Four: Utilities..32
Adding Character Offsets...33
Adding Pseudopages..34
Adding unclear attributes to words with gaps..35
Adorning Named Entities...36
Applying an XSLT transformation to XML files...37
Comparing String Counts...38

Statistical Background..38
Log-likelihood for comparing texts...38
References..39

Comparing Adorned Files..40
Change Log Format..40

Comparing Tabular Files..42
Converting an adorned file to Sketch engine format...43
Converting an adorned file to TCF format...44
Converting a base adorned file to a simple TEI P5-like format...................................45

Defining the parts of speech using an interGrp element..46

10/01/13 MorphAdorner Page i

Correcting Quote Marks...47
Counting Affixes in an Adorned Text...48
Counting Words In An Adorned Text...49
Creating A Lexicon..50
Creating a Suffix Lexicon..51
Extracting Abbreviation Using PUNKT..52
Extracting text from a TEI XML file...53
Finding Languages in which a TEI Encoded Text is Written.......................................54
Fixing Superscripts...55
Generating Tag Transition Probabilities...56
Merging a Brill Lexicon...58
Merging an Enhanced Brill Format Lexicon..59
Merging Annolex corrections with adorned TEI XML files..60
Merging Spelling Data...61
Merging Text Files...62
Merging Word Lists..63
Moving notes in TEI XML files...64
Processing Soft Hyphens..65
Relemmatizing an Adorned File...66
Removing cruft from TEI XML file...67
Running The Link Grammar Parser...68
Sampling Text Files..69
Stripping Word Attributes..70
Training A Part Of Speech Tagger..71

Creating training data...71
Updating the lemmatizer..72
Creating the lexicons..72
Generating probability transition matrices...72
Spelling maps...72

Unadorning adorned TEI files..74
Updating an Adorned File..75
Validating XML Files...76
Verticalizing an Adorned Text..77

Part Five: Background Information..78
Gap Filler...78
Hyphenator...78
Language Recognizer...79
English Lemmatizer...80

Stemming..80
English Lemmatization Process...81

Using a lemma from the word lexicon...81

10/01/13 MorphAdorner Page ii

Word classes for lemmatization...81
Irregular forms...81
Rules of detachment...81
Ambiguous endings...82
Words containing multiple parts of speech..82
Punctuation and Symbols...82
Ambiguous lemmata..83

Lexicon Lookup...84
Lexicon File Format...84

MorphAdorner XML Output..86
TEI-Analytics...86
XML Tag types: Hard, Soft, and Jump Tags..86
The <w>, <pc> and <c> tags..86
<w> tag attributes...87
Word IDs...88
Location IDs...89
Marking the end of a sentence..90
Abbreviated attribute output...90
Split tokens...91
Simplified TEI P5-like output..91
Named Entities...92

Name Recognition..93
NUPOS and Morphology...94

Spellings...94
Word Parts..95
Word Classes..96
Parts of Speech...98
Lemmata...99
MorphAdorner..99
Summary...100
NUPOS for English..101

Parser..110
Part of Speech Tagging...111

Guessing Parts of Speech for Unknown Words..112
Trigram Tagger Mathematical Background..114

Pluralizer..117
Sentence Splitting...118

Sentence Splitter Heuristics..118
Abbreviations...118
Characters not allowed to start a sentence...119
Interjections...120
Numbers...120

Spelling Standardization..121
Standardization Process..121

Spelling Map File Formats..122

10/01/13 MorphAdorner Page iii

Standardization Steps...123
Interactions with Part Of Speech...124
Standardizing Proper Names...124
Proper name search algorithm...125

Syllable Counter...127
Text Segmenter...128
Text Summarizer..129
Thesaurus...130
Verb Conjugator...131
Word Tokenization...132

Word Tokenization Problems...132
Commas in numbers..132
Missing whitespace after a period...133
Roman numerals..134

Processing Text Creation Partnership Files..135
Introduction..135
The SGML source files...135

Origin and nature of the source files..135
Typographical changes..136
Idiosyncratic features of the source files...136
Line breaks...136
Superscripts and subscripts..136
Decorated initial characters...136

The interim P5 version of each file..137
Conversion of character entities..137
Line-breaking hyphens..137
Superscripts and subscripts..137
Decorated initial characters...137
Gaps...137

Post-processing the Abbot TEI files...138
Converting ^d to elements...138
Superscripts and subscripts..138
yᵉ, yᵗ, and yᵘ..138
Common superscripts..138
Problematic superscripts..138
Converting superscripts to tag form...139

The tokenized version...139
About tokenization...139
The xml:id and its complementary location id..139
Tokenization and the apostrophe...140
Tokenization and the mdash..141
Periods and abbreviations..141
Roman numerals..142
Back-tick characters...142

Edge cases of 'words' in MorphAdorned texts...142

10/01/13 MorphAdorner Page iv

Reflexive pronouns..142
British monetary terms...143
Today, tomorrow, and yesterday..143

Changes in the tokenized file...143
The tokenized file as the basis for linguistic adornment...143
The character of the change log...143
Long 's'...144
Soft hyphens..145
Character entities without corresponding utf-8 code points..145
The horizontal bar as the marker of polite elision...145
Decorator characters..145
hi tags inside words..145

Post-processing the tokenized file..146
Adding type="unclear" to words containing gap characters...146
Other token-based changes..146

The process of linguistic adornment...146
The pivotal position of the tokenized but not yet adorned file..146
Linguistic adornment...147
Errata divs..147

Output formats..147
Native output..147
Tabular output..147
TEI compliant output...148
Other output formats..149

NUPos interpGrp..149
Placement of notes..149
Searching the corpora...150
MorphAdorner Server..151
Future directions...151

Part Six: Programming Examples..152
Example One: Adorning a string With Parts Of Speech..152

Adorning a string With Parts Of Speech..152
Creating a default tokenizer and sentence splitter..152
Getting the parts of speech...152
Displaying the results...152
Putting it altogether..153

Example Two: Adorning a string with lemmata and standard spellings....................158
Creating a default lemmatizer and spelling standardizer..158
Adding lemmata and standardized spellings to the output...158
Getting the lemma form..159
Getting the standardized spelling...161
Putting it altogether..163

Example Three: Finding sentence and token offsets..172
Sample text: Lincoln's Gettysburg Address..172
Putting it altogether..174
Running the program..174

10/01/13 MorphAdorner Page v

Example Four: Using An Adorned Text...181
Sample text...181
Generating displayable sentences...181
Extracting individual word information...182
Word Paths..184
Generating XML..184
Searching word paths...185
Putting it altogether..185

MorphAdorner Server..192
Plain text services...192
TEI XML services..192

MorphAdorner Server Installation...193
Quick Setup..193
File Layout of MorphAdorner Server (MAServer) Release...194
Installing and Building MAServer...194
Running MAServer In A Servlet Server...196
Testing..197
License..198
Documentation...198
Accessing the services..199

MorphAdorner Server: Accessing the server programmatically................................200
How the MorphAdorner Server operates...200
Common features of the services...200

Support of GET versus POST..200
Media format of service responses..200
Using WADL to view the service query parameters..200

Accessing the server from a web page...201
Example: accessing the Lemmatizer service...201
Example: accessing the Lemmatizer service using Javascript and Ajax.................................203
Example: accessing the Lemmatizer service using an iframe...208
Using an iframe as a fallback when JavaScript is not enabled..210
Example: accessing the Tokenize TEI file service...212

Accessing the server from a Java program...214
Example: accessing the Lemmatizer service from a Java program...214
Example: accessing the Tokenize TEI file service...215

MorphAdorner Server Services: Adorn Plain Text Service.......................................216
Query parameters..216
Sample POST form...216
Output...218

JSON output...218
XML output...222
HTML output (source)...226

HTML output (display)..227
Text output..228
MorphAdorner Server Services: CorpusConfig Service..229

10/01/13 MorphAdorner Page vi

Query parameters..229
Sample POST form...229
Output...229

JSON output...230
XML output...230
HTML output (source)...230
HTML output (display)..231
Text output...231

MorphAdorner Server Services: Gap Filler Service..232
Query parameters..232
Sample POST form...232
Output...233

JSON output...233
XML output...234
HTML output (source)...234
HTML output (display)..234
Text output...234

MorphAdorner Server Services: Hyphenator Service..235
Query parameters..235
Sample POST form...235
Output...236

JSON output...236
XML output...236
HTML output (source)...236
HTML output (display)..237
Text output...237

MorphAdorner Server Services: Language Recognizer Service................................238
Query parameters..238
Sample POST form...238
Output...239

JSON output...239
XML output...240
HTML output (source)...240
HTML output (display)..240
Text output...241

MorphAdorner Server Services: Lemmatizer..242
Query parameters..242
Sample POST form...242
Output...244

JSON output...244
XML output...245
HTML output (source)...245
HTML output (display)..245
Text output...245

MorphAdorner Server Services: Lexicon Lookup Service..246
Query parameters..246

10/01/13 MorphAdorner Page vii

Sample POST form...246
Output...247

JSON output...247
XML output...250
HTML output (source)...252
HTML output (display)..253
Text output...254

MorphAdorner Server Services: Name Recognizer Service......................................255
Query parameters..255
Sample POST form...255
Output...256

JSON output...257
XML output...257
HTML output (source)...258
HTML output (display)..258
Text output...258

MorphAdorner Server Services: Noun Pluralizer Service...259
Query parameters..259
Sample POST form...259
Output...260

JSON output...260
XML output...260
HTML output (source)...260
HTML output (display)..261
Text output...261

MorphAdorner Server Services: Parser Service..262
Query parameters..262
Sample POST form...262
Output...263

JSON output...263
XML output...263
HTML output (source)...264
HTML output (display)..264
Text output...264

MorphAdorner Server Services: Sentence Splitter Service.......................................265
Query parameters..265
Sample POST form...265
Output...269

JSON output...269
XML output...271
HTML output (source)...273
HTML output (display)..274
Text output...274

MorphAdorner Server Services: Spelling Standardizer Service................................275
Query parameters..275
Sample POST form...275

10/01/13 MorphAdorner Page viii

Output...277
JSON output...277
XML output...277
HTML output (source)...278
HTML output (display)..278
Text output...278

MorphAdorner Server Services: Syllable Counter Service.......................................279
Query parameters..279
Sample POST form...279
Output...280

JSON output...280
XML output...280
HTML output (source)...280
HTML output (display)..280
Text output...281

MorphAdorner Server Services: Text Segmenter Service...282
Query parameters..282
Sample POST form...282
Output...285

JSON output...285
XML output...293
HTML output (source)...299
HTML output (display)..300
Text output...301

MorphAdorner Server Services: Text Summarizer Service.......................................302
Query parameters..302
Sample POST form...302
Output...303

JSON output...304
XML output...304
HTML output (source)...305
HTML output (display)..305
Text output...306

MorphAdorner Server Services: Thesaurus Service..307
Query parameters..307
Sample POST form...307
Output...308

JSON output...308
XML output...309
HTML output (source)...309
HTML output (display)..309
Text output...310

MorphAdorner Server Services: Word Tokenizer Service...311
Query parameters..311
Sample POST form...311
Output...315

10/01/13 MorphAdorner Page ix

JSON output...315
XML output...316
HTML output (source)...316
HTML output (display)..320
Text output...321

MorphAdorner Server Services: Verb Conjugator Service..322
Query parameters..322
Sample POST form...322
Output...323

JSON output...323
XML output...324
HTML output (source)...324
HTML output (display)..325
Text output...325

MorphAdorner Server Services: Version Service..326
Query parameters..326
Sample POST form...326
Output...326

JSON output...327
XML output...327
HTML output (source)...327
HTML output (display)..327
Text output...327

MorphAdorner Server Services: Adorned XML to Tabular File................................328
Query parameters..328
Sample POST form...328
Output...329

MorphAdorner Server Services: Adorn a TEI XML file Service...............................330
Query parameters..330
Sample POST form...330
Output...331

MorphAdorner Server Services: Apply changes to adorned file service...................332
Query parameters..332
Sample POST form...332
Output...333

MorphAdorner Server Services: Compare Adorned Files Service............................334
Query parameters..334
Sample POST form...334
Output...335

MorphAdorner Server Services: Extract text from TEI XML file service.................336
Query parameters..336
Sample POST form...336
Output...337

MorphAdorner Server Services: Extract Sentences Service......................................338
Query parameters..338

10/01/13 MorphAdorner Page x

Sample POST form...338
Output...339

MorphAdorner Server Services: Move notes in TEI XML file service.....................340
Query parameters..340
Sample POST form...340
Output...341

MorphAdorner Server Services: TEI XML Tokenizer Service..................................342
Query parameters..342
Sample POST form...342
Output...343

MorphAdorner Server Services: Unadorn an adorned TEI XML file service...........344
Query parameters..344
Sample POST form...344
Output...345

Appendices...346
Appendix One: References And Links...346

References..346
Links...346

Appendix Two: Glossary of Natural Language Processing Terms............................347

10/01/13 MorphAdorner Page xi

Part One: Introduction
Poets that lasting marble seek,

Must carve in Latin or in Greek.
We write in sand, our language grows,

And like the tide, our work o'erflows.

-- Edmund Waller

Introduction to MorphAdorner

MorphAdorner is a Java command-line program which acts as a pipeline manager for processes
performing morphological adornment of words in a text. We use the term "adornment" in preference to
terms such as "annotation" or "tagging" which carry too many alternative and confusing meanings.
Adornment harkens back to the medieval sense of manuscript adornment or illumination -- attaching
pictures and marginal comments to texts, as the scribal monk at right is doing.

Currently MorphAdorner provides methods for adorning text with standard spellings, parts of speech
and lemmata. MorphAdorner also provides facilities for tokenizing text, recognizing sentence
boundaries, and extracting names and places. You can find out more about each of these facilities, and
see online demonstrations of each, by consulting the documentation section of the MorphAdorner web
site.

MorphAdorner underwent continuous development in tandem with three projects: WordHoard, Monk,
and Virtual Orthographic Standardization and Part of Speech Tagging (VOSPOS), as well as smaller
scale faculty research projects at Northwestern University. All three projects are now complete. While
MorphAdorner has been used in these projects, it is actually a separate project in its own right.

MorphAdorner saw heavy use in the Monk project. The Monk project sought to adorn a large number
of English language texts from the early Modern English period to the start of the twentieth century.
The total number of adorned words was about 151.5 million words by project end in April 2009.

Starting in October 2012 we initiated a new MorphAdorner v2.0 project which sought to improve
MorphAdorner's processing of several Text Creation Partnership corpora beyond what was attempted
during the Monk project. These corpora included the Early English Books Online (EEBO) corpus, the
Eighteenth Century Collections Online (ECCO), and the Evans Early American Imprint Collection.
You can read more about MorphAdorner's processing of TCP texts (page 135).

We improved MorphAdorner's integration with Abbot. Abbot converts dissimilar collections of XML
texts into a common interoperable form. Abbot was designed and implemented by Brian L. Pytlik
Zillig, Stephen Ramsay, Martin Mueller, and Frank Smutniak.

Our goal in the Abbot and EEBO MorphAdorner collaboration is to turn the TCP texts into the
foundation for a "Book of English," defined as:

• a large, growing, collaboratively curated, and public domain corpus of written English since its
earliest modern form

• with full bibliographical detail
• and light but consistent structural and linguistic annotation.

We also replaced the makeshift demonstration servlets of MorphAdorner v1.0 with a separate
MorphAdorner Server (page 192). The MorphAdorner Server allows access to many MorphAdorner

10/01/13 MorphAdorner Page 1

http://morphadorner.northwestern.edu/morphadorner/documentation/
http://morphadorner.northwestern.edu/
http://morphadorner.northwestern.edu/
http://abbot.unl.edu/
http://quod.lib.umich.edu/e/evans/
http://quod.lib.umich.edu/e/ecco/
http://quod.lib.umich.edu/e/eebo/
http://www.textcreationpartnership.org/
http://panini.northwestern.edu/mmueller/vospos.pdf
http://monkproject.org/
http://wordhoard.northwestern.edu/

facilities through HTTP-based web services. These services can be accessed using simple web forms or
by any programming language which supports web forms and HTTP. The online examples of
MorphAdorner facilities on the MorphAdorner web site use JavaScript to access the services provided
by a local instance of the MorphAdorner Server.

Please see the modification history (page 7) for a general overview of the changes from MorphAdorner
v1 to v2.

How MorphAdorner Works

MorphAdorner drives a text through the following stages or "pipes."

• Input
• Sentence Splitting
• Tokenization
• Spelling Standardization
• Part of Speech Tagging
• Lemmatization
• Output

Each of these stages is defined in terms of Java interfaces. Each interface has an associated factory
class which MorphAdorner uses to instantiate particular implementations of the interface under control
of a configuration file. This allows easy substitution of different implementations into the pipeline by
changing the configuration file. A programmer can create new custom implementations of any interface
and tell MorphAdorner to use the custom implementation in the configuration file. Each pipe can also
be used independently of MorphAdorner.

10/01/13 MorphAdorner Page 2

How Do I ...
Download and install MorphAdorner?

• See MorphAdorner Client Installation (page 4).

Cite MorphAdorner in a publication?

• See Citing MorphAdorner (page 12).

Adorn a text file with parts of speech, lemmata, and standard spellings?

• See Part Two: Adorning A Text (page 13).

Tokenize a TEI XML file?

• See Tokenizing an XML Text With MorphAdorner (page 15).

Create an embedded adorner in a Java program?

• See Example One: Adorning a string With Parts Of Speech (page 152).

Find out more about the NUPOS part of speech tag set?

• See NUPOS and Morphology (page 94).

Find definitions of technical terms used this document?

• See Appendix Two: Glossary of Natural Language Processing Terms (page 347).

Know if I can use the MorphAdorner code in my own custom program?

• See the MorphAdorner License (page 8).

Get help when I have problems with MorphAdorner?

• See MorphAdorner Support (page 12).

Deal with Java "OutOfMemory" errors?

• See Java OutOfMemory Errors (page 15).

10/01/13 MorphAdorner Page 3

MorphAdorner Client Installation
The file

morphadorner-2.0.1.zip

contains the MorphAdorner client source code, data, and libraries.

Current version: 2.0.1
Last update: September 30, 2013

The Mercurial repository

http://bitbucket.org/pibburns/morphadorner

contains the source code, data files, and build configuration files for generating the MorphAdorner
release from scratch. The repository is intended for use by programmers who wish to modify the
MorphAdorner code.

The MorphAdorner Server has its own download and installation instructions.

Quick Setup

If you downloaded the MorphAdorner release from the Mercurial repository on bitbucket.org, please
go to the section "Installing and building MorphAdorner."

If you downloaded the ready-to-use morphadorner-2.0.1.zip file, proceed as follows. Expand the
contents of the morphadorner-2.0.1.zip file into an empty directory. Make sure you retain the existing
directory structure.

You must have the Java run-time environment installed on your machine to run MorphAdorner. If you
do not, go to the section "Installing and Building MorphAdorner" for information on where to get a
copy of the Java runtime.

Once you have Java installed you can proceed with running MorphAdorner.

File Layout of Morphadorner Client Release

File or Directory Contents

README.txt Printable copy of this file in Windows text format (lines terminated by
Ascii cr/lf).

bin/ Binaries for MorphAdorner.

build.xml Apache Ant build file used to compile MorphAdorner.

data/ Data files used by MorphAdorner.

dist/ Holds generated morphAdorner.jar program file.

documentation/ MorphAdorner documentation.

gatelib/ Java libraries used by Gate.

10/01/13 MorphAdorner Page 4

http://morphadorner.northwestern.edu/morphadorner/download/morphadorner-2.0.1.zip
https://morphadorner.northwestern.edu/morphadorner/server/installingserver
http://bitbucket.org/pibburns/morphadorner

ivy.xml Apache Ivy dependencies definitions.

ivysettings.xml Apache Ivy settings.

javadoc/ Javadoc (internal documentation).

lib/ Java library files.

misc/ Miscellaneous configuration files.

morphadornerlog.config MorphAdorner logging configuration file.

src/ MorphAdorner client source code.

xslt/ XSLT stylesheets used by utilities.

Installing and Building MorphAdorner Client

Extract the files from morphadorner-2.0.1.zip, retaining the directory structure, to an empty directory.
The zip file contains precompiled (with Java 1.6) versions of all of the code as well as the javadoc.

You do not need to rebuild the code unless you want to make changes. If you do want to rebuild the
code, make sure you have installed recent working copies of Sun's Java Development Kit and Apache
Ant on your system. The Java development kits for Windows, Mac OS X, and Linux systems may be
obtained from

http://www.oracle.com/technetwork/java/javase/downloads/index
.html

Alternatively, OpenJDK may be obtained from

http://openjdk.java.net/install/index.html

You must use a Java compiler which is compatible with Java 1.6 or higher.

Apache Ant may be obtained from

http://ant.apache.org

Move to the directory in which you extracted morphadorner-2.0.1.zip, and type:

ant

This should build MorphAdorner successfully. The morphadorner.jar file will be placed in the "dist"
subdirectory.

Type

ant javadoc

to generate the javadoc (internal documentation) into subdirectory "javadoc".

Type

ant clean

to remove the effects of compilation.

10/01/13 MorphAdorner Page 5

http://ant.apache.org/
http://openjdk.java.net/install/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Documentation

Printable documentation, in Adobe Acrobat PDF format, will appear in the
documentation/morphadorner.pdf file in the MorphAdorner release. This documentation is still in
progress and not yet available.

MorphAdorner documentation is also available online. The online version will generally be more up-
to-date than the printable version included in the release materials. The javadoc (internal
documentation) is also available online as well as in the release materials in the javadoc/ directory. The
online MorphAdorner modification history describes what has changed from one release of
MorphAdorner to the next.

Running MorphAdorner

MorphAdorner has run successfully on Windows, Mac OS X, and various flavors of Linux.

Before running MorphAdorner on Unix-like systems you will need to mark the Unix script files as
executable before using them. You can use the chmod command to do this, e.g.:

chmod 755 adornncfa

The MorphAdorner release contains a script makescriptsexecutable which applies chmod to each of
the scripts in the release. On most Unix-like systems you can execute makescriptsexecutable by
moving to the MorphAdorner installation directory and entering

chmod 755 makescriptsexecutable
./makescriptsexecutable

or

/bin/sh <makescriptsexecutable

The sample batch file adornncf.bat and the corresponding Linux script adornncf shows how to run
MorphAdorner to adorn simple TEI format XML files for 19th century and later works in which quote
marks are not distinguished from apostrophes. Use the sample batch file adornncfa.bat or the script
adornncfa for files in which quote marks are distinguished from apostrophes.

For example, to adorn TEI XML files in directory /myfiles into the output directory /myoutputfiles on
Unix-like systems, open a terminal window in the MorphAdorner directory and type

./adornncf /myoutputfiles /myfiles/*.xml

On Windows you would open a console window in the MorphAdorner directory and type

adornncf \myoutputfiles \myfiles*.xml

Please see the documentation section "Adorning a Text" in the online web site or the printable PDF for
more information on these and other sample batch files and scripts in the MorphAdorner release.

There are presumably lots of warts, misfeatures, bugs, missing items, and whatnot. Use MorphAdorner
with caution.

10/01/13 MorphAdorner Page 6

http://morphadorner.northwestern.edu/morphadorner/documentation/modhist/

Modification History
Version 2.0.1. September 25, 2013.

1. Correct mishandling of some empty elements in TEI XML files.

Version 2.0.0. September xx, 2013.

Initial public release of MorphAdorner v2.0.0.

Main changes since 1.0.1.

1. Created a Mercurial repository to hold the source code and build materials:
http://bitbucket.org/pibburns/morphadorner/

2. Reorganized the code base to place all the linguistics processing code under the
edu.northwestern.at.morphadorner.corpuslinguistics parent package.

3. Replaced the old sample servlets with standalone MorphAdorner server. This has its own code
base and release materials.

4. Multiple improvments to basic tokenization and sentence-splitting facilities, including addition
of basic support for tokenizing and sentence-splitting of texts written in languages other than
English.

5. Upgraded language recognition facilities with a more recent algorithm from Nakatani Shuyo.
6. Improved part of speech adornment particularly for Early Modern English. Among other

changes, the suffix analysis used to select candidate parts of speech for unknown words now
disallows candidate parts of speech to be assigned from closed word classes.

7. Added a utility for converting the "base" MorphAdorner adorned output to a more TEI P5-like
format.

8. Added a number of support utilities for improving the processing of corpora from the Text
Creation Partnership.

9. Added some extra fields to the tabular (verticalized) output from adorned files.
10.Added support for different abbreviation lists for main and paratext (important for drama texts).
11.Added implementation of the PUNKT algorithm of Tibor and Strunk for extracting potential

abbreviation lists from a plain-text corpus.
12.Added generic utility to apply and XSL transformation to a set of input files.
13.Added classes to support basic text summarization, hyphenation, and syllable counting.
14.Multiple other minor bug fixes and improvements.

10/01/13 MorphAdorner Page 7

http://bitbucket.org/pibburns/morphadorner/

MorphAdorner License
The MorphAdorner source code and data files fall under the following NCSA style license. Some of the
incorporated code and data fall under different licenses as noted in the section third-party licenses
below.

Copyright © 2006-2013 by Northwestern University. All rights reserved.

Developed by:
Academic and Research Technologies
Northwestern University
http://www.it.northwestern.edu/about/departments/at/

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal with the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimers.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimers in the documentation and/or other materials provided with the
distribution.

3. Neither the names of Academic and Research Technologies, Northwestern University, nor the
names of its contributors may be used to endorse or promote products derived from this
Software without specific prior written permission.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS WITH THE SOFTWARE.

Also please see the section on support on page 12.

Third-party Licenses

1. Apache Ant
Copyright © 2000-2013 The Apache Software Foundation.
Licensed under the Apache Software License 2.0. For complete license information, please see
Apache Ant license.

2. Apache Commons
Copyright © 2000-2013 The Apache Software Foundation.
Licensed under the Apache Software License 2.0. For complete license information, please see
Apache Ant license.

3. Apache Ivy
Copyright © 2007-2013 The Apache Software Foundation.
Licensed under the Apache Software License 2.0.

10/01/13 MorphAdorner Page 8

http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/apache20.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/apache-ant.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/apache20.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/apache-ant.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/apache20.html
http://www.it.northwestern.edu/about/departments/at/

4. Apache Log4J
Copyright © 1999 The Apache Software Foundation. All rights reserved.
Licensed under the Apache Software License 1.1. For complete license information, please see
Apache Log4j license.

5. Apache Xerces2 Java Parser
Copyright © 1999-2004 The Apache Software Foundation. All rights reserved.
Licensed under the Apache Software License 1.1. For complete license information, please see
Apache Xerces2 Java Parser license..

6. Arithmetic Utilities from Visual Numerics
Copyright © 1997 - 1998 by Visual Numerics, Inc.
All rights reserved.
Some methods in the ArithUtils class written by Visual Numerics are covered by a BSD-like
license. For complete license information, please see Visual Numerics license.

7. Cybozu Labs Language Detector
Copyright (c) 2010-2011 Cybozu Labs, Inc.
All rights reserved.
The Cybozu Labs language detector is licensed under the Apache Software License 2.0. The
version of the code used in MorphAdorner includes the original code base by Nakatani Shuyo,
with modifications by Robert M. Theis as well as local Northwestern University modifications.

8. Double Metaphone
Written by Ed Parrish.
Licensed under an Apache license.

9. GATE (General Architecture for Text Engineering)
Copyright © The University of Sheffield 2001-2008.
Licensed under the GNU Lesser General Public License. This applies to the Hepple Tagger as
well.

10.International Components for Unicode (ICU4J)
Copyright © International Business Machines Corporation and others.
Licensed under the ICU license.

11.ISO Relax
Copyright © 2001-2002 SourceForge ISO-RELAX Project.
All rights reserved.
Licensed under a BSD style license. For complete license information, please see ISO RELAX
license..

12.ISO Relax JAXP Bridge
Copyright © 2001-2002 SourceForge ISO-RELAX Project.
All rights reserved.
Licensed under a BSD style license. For complete license information, please see ISO RELAX
license..

13.Jackson JSON processing
Copyright © 2007-2013 by Tatu Saloranta.
All rights reserved.
Licensed under the Apache Software License 2.0.

14.jargs command line parser
Copyright © 2001-2003 Steve Purcell.
Copyright © 2002 Vidar Holen.
Copyright © 2002 Michal Ceresna.

10/01/13 MorphAdorner Page 9

http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/apache20.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/isorelax.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/isorelax.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/isorelax.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/isorelax.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/icu.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/lgpl.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/apache20.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/visnum.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/apache-xerces2-j.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/apache11.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/apache-log4j.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/apache11.html

Copyright © 2005 Ewan Mellor.
The jargs command line parser library is available under a BSD-style license. For complete
license information, please see jargs license.

15.Jaro-Winckler String Similarity
Copyright (c) 2003 Carnegie Mellon University.
The Jaro-Winckler code comes from the SecondString project and is licensed under an NCSA-
style license. For complete license information, please see Jaro-Winckler license.

16.Java API for WordNet Searching 1.1
Copyright (c) 2007 by Brett Spell.
JAWS is available under a BSD style license. For complete license information, please see
JAWS license.

17.JDOM
Copyright © 2000-2004 Jason Hunter & Brett McLaughlin.
All rights reserved.
JDOM is available under an Apache-style open source license, with the acknowledgment clause
removed. For complete license information, please see JDOM license.

18.Jettison
Copyright 2006 Envoi Solutions LLC.
Licensed under the Apache Software License 2.0.

19.JlinkGrammar
JLinkGrammar is licensed under a BSD-like license (although early references also suggested it
could be licensed under the GNU General Public license).

20.JSONIC
Licensed under the Apache Software License 2.0.

21.JUnit
JUnit is licensed under the terms of the Eclipse Public License v1.0.

22.Lancaster Stemmer
The Lancaster stemmer implementation in WordHoard is based upon Java code written by
Christopher O'Neill and Rob Hooper. The original code was obtained from The Lancaster
Stemming Algorithm web site. The following licensing information was provided by Dr. Chris
Paice.

Paice/Husk Stemmer - License Statement.

This software was designed and developed at Lancaster University, Lancaster, UK, under the
supervision of Dr Chris Paice. It is fully in the public domain, and may be used or adapted by
any organisation or individual. Neither Dr Paice nor Lancaster University accepts any
responsibility whatsoever for its use by other parties, and makes no guarantees, expressed or
implied, about its quality, reliability, or any other characteristic.

It is assumed that, as a matter of professional courtesy, anyone who incorporates this software
into a system of their own, whether for commercial or research purposes, will acknowledge the
source of the code.

23.Longest Common Subsequence
Copyright © 2005 Neil Jones.
All rights reserved.
The longest common subsequence code is provided AS-IS. You may use this code in any way

10/01/13 MorphAdorner Page 10

http://www.comp.lancs.ac.uk/computing/research/stemming/
http://www.comp.lancs.ac.uk/computing/research/stemming/
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/eplv1.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/apache20.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/apache20.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/jdom.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/jaws.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/jarowinckler.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/jargs.html

you see fit, EXCEPT as the answer to a homework problem or as part of a term project in which
you were expected to arrive at this code yourself.

24.Mersenne Twister
Liberal use license contained in the source file. For complete license information, please see
Mersenne twister license.

25.Pluralizer
Original pluralizer was code written by Tom White and licensed under the Apache Software
License 2.0.

26.Sun Multischema Validator (MSV)
Copyright (c) 2001-2008 Sun Microsystems, Inc.
All rights reserved.
Licensed under a BSD style license. For complete license information, please see Sun MSV
license..

27.Porter Stemmer
Martin Porter's home page says "All these encodings of the algorithm can be used free of charge
for any purpose." For complete license information, please see Martin Porter's home page at
http://www.tartarus.org/~martin/PorterStemmer/.

28.Restlet
Of the several available licenses for Restlet, we selected the Apache Software License 2.0.

29.SAX
The SAX processors are in the public domain.

30.Simple web server
Simple is licensed under the Apache Software License 2.0.

31.Text Corpus Format (TCFXB)
Licensed under the GNU Lesser General Public License.

32.TeXHyphenator-J
Licensed under the GNU Lesser General Public License.

33.Text Segmentation
The C99 and Text Tiling algorithms are based upon implementations written by Freddy Choi.
Use of this code is free for academic, education, research and other non-profit making uses only.

34.XGTagger
Licensed under the CeCILL license. For complete license information, please see CeCILL
license.

35.XStream
Copyright (c) 2003-2006, Joe Walnes
Copyright (c) 2006-2009, 2011 XStream Committers
All rights reserved.
Licensed under a BSD style license. For complete license information, please see the XStream
license.

10/01/13 MorphAdorner Page 11

http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/xstream.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/xstream.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/cecill.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/cecill.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/lgpl.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/lgpl.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/apache20.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/apache20.html
http://www.tartarus.org/~martin/PorterStemmer/
http://www.tartarus.org/~martin/PorterStemmer/
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/sunmsv.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/sunmsv.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/apache20.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/apache20.html
http://morphadorner.northwestern.edu/morphadorner/licenses/thirdparty/mersennetwister.html

MorphAdorner Support
While we are happy to hear about your experiences with MorphAdorner, our current programming
commitments limit the amount of individual support we can extend to scholars or research centers
using MorphAdorner. If you find an error, we would appreciate hearing about it. We cannot promise to
fix all reported errors, nor can we promise to add new features as requested. Modifications and
extensions to MorphAdorner are driven principally by our local needs to support Northwestern
University faculty projects.

The MorphAdorner license allows to modify the code any way you please. If you create an extension
that adds functionality to MorphAdorner, and you are willing to make the code available under the
MorphAdorner license, please feel free to send it to us for potential inclusion in a future release of
MorphAdorner.

You may contact us at pib@northwestern.edu.

Credits
MorphAdorner was designed, implemented, and documented by Philip R. "Pib" Burns of Academic
and Research Technologies. MorphAdorner was partially funded by grants from The Andrew W.
Mellon Foundation for WordHoard and Monk, and by ProQuest and the CIC Universities for the
Virtual Orthographic Standardization project. Martin Mueller, Professor of English and Classics, was
the faculty sponsor for these projects.

The development of MorphAdorner v2.0 also received further support from The Andrew W. Mellon
Foundation, the Center for Library Inititatives at the CIC, the Ford Center for Global Citizenship at
Northwestern's Kellogg School of Management, the Northwestern University Library, and Proquest.

John L. Norstad contributed most of the section entitled “NUPos and Morphology” (page 94). Martin
Mueller contributed parts of the section entitled “Processing Text Creation Partnership Files” (page
135).

Citing MorphAdorner
You may cite MorphAdorner as follows in a publication.

Burns, Philip R. (2013) "MorphAdorner v2: A Java Library for the Morphological
Adornment of English Language Texts."
Evanston, IL. Northwestern University.
Retrieved Sep 30, 2013 from
<http://morphadorner.northwestern.edu/morphadorner/download/morphadorner.pdf> .

10/01/13 MorphAdorner Page 12

http://panini.northwestern.edu/mmueller/vospos.pdf
http://monkproject.org/
http://wordhoard.northwestern.edu/
mailto:pib@northwestern.edu

Part Two: Adorning A Text
The MorphAdorner distribution comes packaged with Windows batch files and Unix/Linux script files
to execute MorphAdorner for the texts contained in the Monk collection. You may use these batch files
as a basis for developing scripts to adorn other collections of texts.

The Linux/Unix scripts assume that the "java" command invokes that standard Sun Java run time
environment, not the Gnu Java runtime. MorphAdorner does not run under the Gnu Java run time
environment. MorphAdorner requires Sun Java v1.5 or later.

1. The adorndocsouth.bat Windows batch file and the adorndocsouth Unix shell script execute
MorphAdorner using data files suitable for adorning texts from the Documenting the American
South nineteenth century English language texts. The texts must be encoded in TEI (Text
Encoding Initiative) format using the utf-8 character set.

2. The adornncf.bat Windows batch file and the adornncf Unix shell script execute
MorphAdorner using data files suitable for adorning nineteenth century English language
fiction texts. The texts must be encoded in TEI (Text Encoding Initiative) format using the utf-8
character set.

3. The adornncfa.bat Windows batch file and the adornncfa Unix shell script execute
MorphAdorner using data files suitable for adorning nineteenth century English language
fiction texts in which apostrophes are completely distinguished from left and right single quotes
(e.g., the standard Unicode curly quote characters for left and right single quote are used, and
the usual apostrophe character is reserved for actual apostrophes). The texts must be encoded in
TEI (Text Encoding Initiative) format using the utf-8 character set.

4. The adornecco.bat Windows batch file and the adornecco Unix shell script execute
MorphAdorner using data files suitable for adorning eighteenth century English language texts.
The texts must be encoded in TEI (Text Encoding Initiative) format using the utf-8 character
set.

5. The adorneme.bat Windows batch file and the adorneme Unix shell script execute
MorphAdorner using data files suitable for adorning early modern English language texts. The
texts must be encoded in TEI (Text Encoding Initiative) format or the EEBO/TCP format using
the utf-8 character set.

6. The adornplainemetext.bat Windows batch file and the adornplainemetext Unix shell script
execute MorphAdorner using the early modern English data files. The input texts must be plain
Ascii texts encoded using the utf-8 character set.

7. The adornplaintext.bat Windows batch file and the adornplaintext Unix shell script execute
MorphAdorner using the nineteenth century fiction data files. The input texts must be plain
Ascii texts encoded using the utf-8 character set.

8. The adornwright.bat Windows batch file and the adornwright Unix shell script execute
MorphAdorner using data files suitable for adorning nineteenth century texts from the Wright
fiction archive. This script is probably suitable for other American texts of the nineteenth
century. The texts must be encoded in TEI (Text Encoding Initiative) format using the utf-8
character set.

The Unix shell scripts should work with little or no modification under Mac OSX.

10/01/13 MorphAdorner Page 13

For example, to adorn a nineteenth century fiction text on a Windows system, open a command line
prompt and move to the MorphAdorner installation directory. Then type the following command:

adornncf \outputdir \inputdir\mytext.xml

where \outputdir specifies the name of a directory into which to write the adorned xml output, and
\inputdir\mytext.xml specifies the file name of the text to adorn. The output file name will be the
same as the input file name. However, if a file of that name already exists in the output directory, a
"versioned" file name will be created to avoid overwriting the existing file. For example, should the file
"mytext.xml" already exist in the output directory, the output file name will be changed to "mytext-
001.xml". More generally, the three digit version number starts at "001" and is incremented as
necessary to produce a non-existing file name.

Alternatively, MorphAdorner optionally allows you to specify that texts with a matching adorned
version in the current output directory should not be readorned. See the description of the
xml.adorn_existing_xml_files configuration setting (page 20) for or more details.

You may specify more than one file to adorn, and you may specify wildcards to match more than one
file. For example:

adornncf \outputdir \inputdir*.xml

adorns all the files with the extension .xml in the directory \inputdir.

On a Unix/Linux/Mac OSX system, open a terminal window, move to the MorphAdorner installation
directory, and type the following command:

./adornncf /outputdir /inputdir/mytext.xml

Don't forget to mark the adornncf script file as executable before using it. On most Unix/Linux
systems you can use the chmod command to do this:

chmod 755 adornncf

If you know for certain that the text you wish to adorn distinguishes the use of the apostrophe character
(') from left and right single quotes (Unicode characters 0x2018 and 0x2019 respectively), you may use
adornncfa instead of adornncf.

To adorn an early modern English text, substitute adorneme for adornncf in the command line. To
adorn plain text using the nineteenth century data file, substitute adornplaintext for adornncf in the
command line.

MorphAdorner writes a log of its activities to standard system output, which is usually the display. You
may redirect standard output to another file in the usual fashion. For example, under Windows, to
redirect the MorphAdorner log output to a disk file, type:

adornncf \outputdir \inputdir\mytext.xml >myoutput.lis

where myoutput.lis is the name of the file to which to redirect MorphAdorner's logging output. If you
have the tee utility installed, you can redirect the output to a file and watch the output displayed to your
screen at the same time:

adornncf \outputdir \inputdir\mytext.xml | tee myoutput.lis

10/01/13 MorphAdorner Page 14

The tee utility is usually provided by default on most Unix/Linux and Mac OSX systems. The tee
utility is not provided as a standard part of Microsoft Windows operating systems. Third party
Windows implementations are available. You may download a Windows implementation of tee as
tee.zip. Use your favorite unzip program to extract tee.exe from tee.zip. Place tee.exe in the
MorphAdorner installation directory.

Java OutOfMemory Errors

Each of the batch and script files above invoke MorphAdorner with a Java virtual machine size of 1024
megabytes. This means your PC needs to have a minimum of one gigabyte of memory. The 1024
megabyte size is sufficient for adorning texts containing up to a quarter of a million words or so.
Longer texts may require a larger Java virtual machine memory allocation. If you see the error message

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

in the MorphAdorner output log, you need to specify a larger heap space setting to Java.
MorphAdorner is a memory intensive program, especially when adorning large XML encoded texts.

If your system has more than a gigabyte of memory installed, you can raise the Java virtual machine
size by modifying the value of the java -Xmx1024m parameter in the batch file or script you are
using. To specify a larger heap size, e.g., 1,500 megabytes for example, change java -Xmx720m to
java -Xmx1500m . However, even when your system has more than two gigabytes of memory you
may not be able to request a heap size that large on a 32 bit operating system. You will need to
experiment with different heap size settings to find the maximum your particular system allows.

For large texts containing millions of words you may need to run MorphAdorner on a system with a 64
bit version of Java. For example, we found that several of the longest texts in the EEBO collection
required a virtual machine size of several gigabytes, e.g., java -Xmx8g for an eight gigabyte size.

If you encounter the OutOfMemory error when running a MorphAdorner utility program, you can
modify the heap size setting in the batch file or script for that program as well.

Tokenizing an XML Text

If you just want to tokenize XML texts rather than fully adorn them, select the batch file/script which
most nearly matches the type of corpus you have, and add the "-k" command line option to the
MorphAdorner invocation. This causes MorphAdorner to emit the tokenized text -- that is, the <w>,
<pc> with word IDs include along with the whitepspace marker <c> elements. The other word-level
adornments are not output. See MorphAdorner Command Line Syntax (page 18) for details on the
MorphAdorner command line.

As an example, let's modify the adornncf script so that it only tokenizes XML files rather than fully
adorning them.

#!/bin/sh
java -Xmx1024m -Xss1m -cp .:bin/:dist/*:lib/* \
 edu.northwestern.at.morphadorner.MorphAdorner \
 -p ncf.properties \
 -l data/ncflexicon.lex \
 -t data/ncftransmat.mat \
 -u data/ncfsuffixlexicon.lex \
 -a data/ncfmergedspellingpairs.tab \
 -s data/standardspellings.txt \

10/01/13 MorphAdorner Page 15

http://morphadorner.northwestern.edu/morphadorner/download/tee.zip

 -w data/spellingsbywordclass.txt \
 -o $1 \
 $2 $3 $4 $5 $6 $7 $8 $9

All we need to do is to add the "-k" command line parameter and save the script to a new file, say,
tokenizencf:

#!/bin/sh
java -Xmx1024m -Xss1m -cp .:bin/:dist/*:lib/* \
 edu.northwestern.at.morphadorner.MorphAdorner \
 -k \
 -p ncf.properties \
 -l data/ncflexicon.lex \
 -t data/ncftransmat.mat \
 -u data/ncfsuffixlexicon.lex \
 -a data/ncfmergedspellingpairs.tab \
 -s data/standardspellings.txt \
 -w data/spellingsbywordclass.txt \
 -o $1 \
 $2 $3 $4 $5 $6 $7 $8 $9

You can modify the Windows batch file similarly.

java -Xmx1024m -Xss1m -cp bin\;dist*;lib*; ^
 edu.northwestern.at.morphadorner.MorphAdorner ^
 -k
 -p ncf.properties ^
 -l data/ncflexicon.lex ^
 -t data/ncftransmat.mat ^
 -u data/ncfsuffixlexicon.lex ^
 -a data/ncfmergedspellingpairs.tab ^
 -s data/standardspellings.txt ^
 -w data/spellingsbywordclass.txt ^
 -o %1 ^
 %2 %3 %4 %5 %6 %7 %8 %9

For the Unix script, remember to make it executable.

chmod 755 tokenizencf

You can now tokenize one or more TEI XML files by invoking tokenizencf:

./tokenizencf /mytokenizedfiles /myteifiles/*.xml

MorphAdorner tokenizes all the TEI XML files in the directory /myteifiles and writes the tokenized
versions in the directory /mytokenizedfiles .

The equivalent Windows command is:

tokenizencf \mytokenizedfiles \myteifiles*.xml

Here is a brief sample of tokenized TEI XML text.

 <l>
 <w xml:id="K135834_000-000990">Or</w>
 <c> </c>

10/01/13 MorphAdorner Page 16

 <w xml:id="K135834_000-001000">those</w>
 <c> </c>
 <w xml:id="K135834_000-001010">whom</w>
 <c> </c>
 <w xml:id="K135834_000-001020">choice</w>
 <c> </c>
 <w xml:id="K135834_000-001030">and</w>
 <c> </c>
 <w xml:id="K135834_000-001040">common</w>
 <c> </c>
 <w xml:id="K135834_000-001050">good</w>
 <c> </c>
 <w xml:id="K135834_000-001060">ordain</w>
 <pc xml:id="K135834_000-001070" unit="sentence">.</pc>
 </l>

You can later fully adorn the tokenized files by inputting them to MorphAdorner using, e.g., adornncf.

The tokenized format is useful if you wish to edit the tokenized texts before performing full adornment.
See Processing Text Creation Partnership Files (page 135) for an example of how this proved useful
when processing those files.

10/01/13 MorphAdorner Page 17

Part Three: Configuring MorphAdorner

MorphAdorner Command Line
The MorphAdorner command line takes the following form.

java -Xmx640m -Xss1m edu.northwestern.at.morphadorner.MorphAdorner
-a spellingpairs.tab
-d default.properties

 -h
-k

 -l lexicon.lex
 -o adornedoutput/
 -p overriding.properties
 -r contextrules.txt
 -s standardspellings.txt
 -t transitionmatrix.mat
 -u suffixlexicon.lex
 -w spellingsbywordclass.txt
 -x lexicalrules.txt
 input1 input2 ...

where

Parameter Definition

a
A spelling map file. This file contains two columns separated by a tab. The first column
is a variant spelling. The second column is the standard spelling. You may repeat this
argument multiple times to specify more than one spelling map.

d
Default MorphAdorner properties file. Usually the morphadorner.properties file which
appears in the main MorphAdorner installation directory.

h Displays a brief help message to the standard output file.

k
Only tokenize XML input files. Overrides settings which produce other word-level
adornments besides the word ID.

l A word lexicon file in MorphAdorner format.

o The directory into which adorned output files are written.

p
A MorphAdorner Configuration Settings (page 20) file. The entries in this file override
the default morphadorner.properties file.

r The name of a file providing contextual rules for a rule-based part of speech tagger.

s A text file containing a list of standard spellings, one per line.

t The part of speech tag transition probability matrix used by the probabilistic part of

10/01/13 MorphAdorner Page 18

speech taggers.

u
A suffix lexicon file in MorphAdorner format. This should be generated from the word
lexicon file specified by the l= parameter.

w A spelling map file which breaks down the variant to standard spellings by word class.

x The name of a file providing lexical rules for a rule-based part of speech tagger.

Input1
input2 ...

The input files to be adorned.

Settings which appear in the default properties file specified by the d= parameter
(morphadorner.properties if no p= parameter appears) will be overridden by those specified in the p=
properties file. The other command line parameters override the settings in both properties files.

See the batch files and scripts such as adornncf, adorneme, etc. provided in the MorphAdorner release
materials for examples of the use of the MorphAdorner command line parameters.

10/01/13 MorphAdorner Page 19

MorphAdorner Configuration Settings
The configuration settings for MorphAdorner appear in utf-8 text files. Each setting takes the form
setting=value and appears on a separate line in the configuration file. The default settings file is called
morphadorner.properties. Overriding settings may be specified by in a file named by the p= parameter
on the MorphAdorner command line (page 18). A number of sample settings files are provided in the
MorphAdorner release materials, corresponding to settings used when adorning files in the various
corpora used in the Monk project.

Properties file Corpus

docsouth.properties Documenting the American South XML files.

eaf.properties Early American Fiction XML files.

ecco.properties Eighteenth Century Collections Online XML files.

ece.properties Eighteenth Century English XML files.

eme.properties Early Modern English XML files.

emeplaintext.properties Early Modern English plain text files.

ncf.properties
Nineteenth Century Fiction XML files in which the apostrophe,
opening single quote, and closing single quote are the same
character.

ncfa.properties
Nineteenth Century Fiction XML files in which the apostrophe is
distinguished from the opening and closing single quote characters,.

plaintext.properties Plain text of nineteenth century vintage or later.

wright.properties Wright Fiction Archive XML files.

The following table lists the setting names and their definitions, along with typical values.

MorphAdorner Configuration Settings

Setting Name Description and Values

abbreviations.abbreviations_url
Specifies the URL for an extra list of abbreviations.
Such a list for Early Modern English texts may be
found in data/emeabbreviations.

abbreviations.main.abbreviations_url
Specifies the URL for an extra list of abbreviations to
be used only for main text.

abbreviations.main.abbreviations_url
Specifies the URL for an extra list of abbreviations to
be used only for side text, e.g., paratext.

adornedwordoutputter.class Class which produces adorned word values. The
following output classes are currently implemented in

10/01/13 MorphAdorner Page 20

MorphAdorner.

• PrintStreamAdornedWordOutputter writes
words and their adornments as plain utf-8 text
in tab-separated columns to a file. This is the
default output format.

• ConsoleAdornedWordOutputter writes words
and their adornments as plain utf-8 text in tab-
separated columns to the default system output
device.

• ListAdornedWordOutputter writes words and
adornments to an internal list of strings. This is
used when processing XML input files.

• SimpleXMLAdornedWordOutputter outputs
words and their adornments to a file in a simple
XML format.

<words>
 <word id="1">
 <tok>Poets</tok>
 <spe>Poets</spe>
 <pos>n2</pos>
 <reg>Poets</reg>
 <lem>poet</lem>
 <eos>0</eos>
 </word>
 <word id="2">
 ...
 </word>
 ...
</words>

• ByteStreamAdornedWordOutputter writes
words and adornments to an internal byte
stream.

adorner.handle_xml
true to use the TEI XML handler, false to use the
ordinary text handler.

adorner.lemmatization.ignorelexiconentries

true to ignore lemma definitions in the current lexicon
file when generating output lemmata, and use only the
current lemmatizer. false to look at the lemma
definitions in the lexicon first, and use the lemmatizer
only when there is no lemma definition in the lexicon.

adorner.output.end_of_sentence_flag true to output an end of sentence flag for each adorned
word, false to not generate this flag. The attribute

10/01/13 MorphAdorner Page 21

value is set to "1" when a word ends a sentence and
"0" otherwise.

adorner.output.end_of_sentence_flag_attribute
The name of the XML word attribute for the end of
sentence flag. The default value is eos.

adorner.output.kwic
true to output keyword in context (kwic) entries for
each adorned word, false to not generate these entries.

adorner.output.kwic.width
The number of characters of kwic text to output. 80 is
a typical value, which is split between the left and
right kwic text.

adorner.output.kwic_left_attribute
The name of the XML word attribute for the kwic text
appearing before a word. The default value is kl.

adorner.output.kwic_right_attribute
The name of the XML word attribute for the kwic text
appearing after a word. The default value is kr.

adorner.output.lemma
true to output the lemma for an adorned word, false
otherwise.

adorner.output.lemma_attribute
The name of the XML word attribute for the lemmata
of an adorned word. The default value is lem.

adorner.output.original_token
true to output the original word token for an adorned
word, false otherwise.

adorner.output.original_token_attribute
The name of the XML word attribute for the original
word token of an adorned word. The default value is
tok.

adorner.output.part_of_speech
true to output the part of speech for an adorned word,
false otherwise.

adorner.output.part_of_speech_attribute
The name of the XML word attribute for the part of
speech of an adorned word. The default value is pos.

adorner.output.running_word_numbers
true to output the word numbers for adorned words as
continuously ascending values. false to restart the
word numbers over for each sentence.

adorner.output.sentence_number
true to output the sentence number for an adorned
word, false otherwise.

adorner.output.sentence_number_attribute
The name of the XML word attribute for the sentence
number for an adorned word. The default value is sn.

adorner.output.spelling
true to output the spelling for an adorned word, false
otherwise.

adorner.output.spelling_attribute
The name of the XML word attribute for the spelling
for an adorned word. The default value is spe.

10/01/13 MorphAdorner Page 22

adorner.output.standard_spelling
true to output the standard spelling for an adorned
word, false otherwise.

adorner.output.standard_spelling_attribute
The name of the XML word attribute for the standard
spelling for an adorned word. The default value is reg.

adorner.output.word_number
true to output the word number for an adorned word,
false otherwise.

adorner.output.word_number_attribute
The name of the XML word attribute for the word
number for an adorned word. The default value is wn.

adorner.output.word_ordinal
true to output the word ordinal for an adorned word,
false otherwise.

adorner.output.word_ordinal_attribute
The name of the XML word attribute for the word
ordinal for an adorned word. The default value is ord.

corpus.name

The name of the corpus for this configuration. Usually
a short string such as "ncf" for "nineteenth century
fiction." Used by the MorphAdorner server when
displaying the available configurations. The server
ignores MorphAdorner configurations which do not
have the corpus.name set.

corpus.description

Longer description the corpus for this configuration.
Used by the MorphAdorner server when displaying the
available configurations. The server ignores
MorphAdorner configurations which do not have the
corpus.dcescription set.

initialspellingstandardizer.class

The initial spelling standardizer class. This is used
when guessing parts of speech for words not present in
the lexicon. NoopSpellingStandardizer, the default,
leaves spellings unstandardized when guessing parts of
speech.

lexicon.suffix_lexicon

The file containing the suffix lexicon. For the standard
MorphAdorner release, the lexicon files appear in the
data/ subdirectory. The 19th century fiction suffix
lexicon is data/ncfsuffixlexicon.lex and the Early
Modern English suffix lexicon is
data/emesuffixlexicon.lex. This value may be
overridden on the MorphAdorner command line by the
-u parameter.

lexicon.word_lexicon The file containing the word lexicon. For the standard
MorphAdorner release, the lexicon files appear in the
data/ subdirectory. The 19th century fiction word
lexicon is data/ncfwordlexicon.lex and the Early
Modern English word lexicon is

10/01/13 MorphAdorner Page 23

data/emewordlexicon.lex. This value may be
overridden on the MorphAdorner command line by the
-l parameter.

morphadornerxmlwriter.class

The class for writing adorned XML files.
DefaultMorphAdornerXMLWriter is the default. This
should not be changed unless you implement a new
XML writer class.

namestandardizer.class

The proper name standardizer class.
DefaultNameStandardizer is the default, which
implements the scheme described in Standardizing
Proper Names (page 124). The
NoopNameStandardizer class leaves names
unstandardized. The EEBOSimpleNameStandardizer
class corrects a handful of names when processing
early modern English texts.

partofspeechguesser.check_possessives

true to check for possessive endings when guessing
the part of speech for an unknown word, false
otherwise. The default setting is false, which is also
the recommended setting.

partofspeechguesser.class

The part of speech guesser class, which tries to
determine the most likely parts of speech for an
unknown word. DefaultPartOfSpeechGuesser is the
default which is designed for English words.

partofspeechguesser.try_standard_spellings
true to use standard spellings when guessing the parts
of speech for unknown words, false to use the original
spellings only. The default setting is true.

partofspeechretagger.class

The class which corrects the initial part of speech
tagging. The IRetagger class applies a short list of
fixup rules to improve the tagging of I tokens. The
NoopRetagger class leaves the original tagging
unchanged. The PronounRetagger class applies a short
list of fixup rules to improve the tagging of pronouns.
The DefaultPartOfSpeechRetagger is the same as
IRetagger.

partofspeechtagger.class The class which perform part of speech tagging. The
default TrigramTagger which is a hidden Markov
model based trigram tagger. This is the workhorse
tagger in MorphAdorner. Other taggers, mostly
experimental, include:

• AffixTagger uses an affix lexicon to assign a
part of speech tag to a word based upon the

10/01/13 MorphAdorner Page 24

prefixes or suffixes of the word.
• BigramTagger is a hidden Markov model based

bigram tagger. It is faster but less accurate than
the trigram tagger.

• BigramHybridTagger combines the bigram
tagger with a second pass by a Hepple tagger to
correct the initial tagging. Note: you must
supply the correction rules, none are provided
by default.

• HeppleTagger is Mark Hepple's rule-based part
of speech tagger modified from the version in
Gate to work with the MorphAdorner lexicons,
guessers, etc.

• RegexpTagger uses regular expressions to
assign a part of speech tag to a word. You must
supply the regular expressions, none are
provided by default.

• SimpleTagger assigns a "noun" part of speech
to all words, except those that appear to be
numbers. Numbers are assigned a "number"
part of speech. Words starting with a capital
letter can be assigned a separate "proper name"
part of speech. This tagger is mostly useful as a
backup to a more sophisticated tagger.

• SimpleRuleBasedTagger assigns the most
commonly occurring part of speech to all
words using a lexicon, and then applies a small
set of contextual rules to "fix up" the tagging.
This simple tagger is useful when very fast
tagging without high accuracy is useful, e.g., in
sentence splitting.

• TrigramHybridTagger combines the trigram
tagger with a second pass by a Hepple tagger to
correct the initial tagging. Note: you must
supply the correction rules, none are provided
by default.

• UnigramTagger uses a lexicon to assign the
most frequently occurring part of speech tag to
a word.

partofspeechtagger.transition_matrix The file containing the tag transition probability matrix
data. For the standard MorphAdorner release, these
files appear in the data/ subdirectory. The 19th century
fiction transition matrix file is data/ncftransmat.mat
and the Early Modern English transition matrix file is

10/01/13 MorphAdorner Page 25

data/emetransmat.mat. This value may be overridden
on the MorphAdorner command line by the -t
parameter.

pretokenizer.class

The class which applies any pretokenization
corrections to the text to prepare it for initial token
extraction. The default is DefaultPreTokenizer which
ensures that characters which should always be
separate tokens are surrounded by whitespace. In
general this class should always be used. The
EEBOPreTokenizer was written to correct the text for
EEBO texts before those texts were modified by
Abbott to conform to TEI Analytics standards.

posttokenizer.class

The class which applies any tokenization corrections
to the initial token extraction. The default is
DefaultPostTokenizer. The EEBOPostTokenizer was
written to correct tokens extracted from EEBO texts
before those texts were modified by Abbott to conform
to TEI Analytics standards.

sentencesplitter.class

The class which determines sentence boundaries.
ICU4JBreakIteratorSentenceSplitter uses an ICU4J
BreakIterator to identify candidate sentences. Several
heuristics are used to correct the initial sentence
identification for English sentences. The
DefaultSentenceSplitter is the same as
ICU4JBreakIteratorSentenceSplitter.

spelling.spelling_pairs

The spelling data file which maps variant spellings to
standard spellings. For the standard MorphAdorner
release, these files appear in the data/ subdirectory.
The 19th century fiction spelling map file is
data/ncfmergedspellingpairs.tab and the Early Modern
English spelling map file is
data/ememergedspellingpairs.tab. This value may be
overridden on the MorphAdorner command line by the
-a parameter.

spelling.spelling_pairs_by_word_class

The spelling data file which maps variant spellings to
standard spellings by word class. For the standard
MorphAdorner release, these files appear in the data/
subdirectory. The spelling map by word class file used
for all periods is data/spellingsbywordclass.txt . This
value may be overridden on the MorphAdorner
command line by the -w parameter.

spelling.standard_spellings The spelling data file which list standard spellings. For
the standard MorphAdorner release, this file is

10/01/13 MorphAdorner Page 26

data/standardspellings.txt . This value may be
overridden on the MorphAdorner command line by the
-s parameter.

spellingmapper.class

The spelling mapper class which maps spellings from
one dialect to another. The
USToBritishSpellingMapper maps United States
spellings to British spellings, while
BritishToUSSpellingMapper maps British spellings to
United States spellings.

spellingstandardizer.class

The class which maps variant spellings to standard
spellings. The DefaultSpellingStandardizer class is the
ExtendedSimpleSpellingStandardizer which uses
spelling maps along with a few simple heuristics to
find standard spellings given a variant spelling. The
SimpleSpellingStandardizer class only uses spelling
maps. The ExtendedSearchSpellingStandardizer
implements the full scheme discussed at Spelling
Standardization Process (page 121) which can lead to
exotically erroneous standard spellings in some cases.

textinputter.class

The class which reads input text for adornment. The
DefaultTextInputter class is the URLTextInputter
which reads utf-8 text from a URL. The
SimpleXMLTextInputter reads utf-8 text from a TEI or
EEBO XML file. The DiskBasedXMLTextInputter also
reads utf-8 text from a TEI or EEBO XML file, but
divides the file into smaller sections which are stored
in temporary disk files and adorned separately. This is
useful for working with large XML input files. The
FirstTokenURLTextInputterreads only the first token in
each line from a URL.

wordlists.use_latin_word_list
true to use an extended list of Latin words when
adding part of speech tags to words, false to not use
the extended list.

wordtokenizer.class
Class which splits a sentence into word tokens.
DefaultWordTokenizer is the default and is suitable for
English text.

xml.adorn_existing_xml_files true to adorn XML files with an existing adorned
version in the output directory, false to skip adornment
for existing files. true is the default value. When set
true and an existing adorned file exists, a versioned
output file name is created to avoid overwriting the
previous adorned version. For example, if the file
"aaa.xml" is to be adorned, and the adorned version

10/01/13 MorphAdorner Page 27

"aaa.xml" already exists in the output directory, then
the file "aaa-001.xml" is created. If "aaa-001.xml"
already exists, "aaa-002.xml" is created, and so on.

xml.close_sentence_at_end_of_hard_tag

true to force a sentence to close at the end of a hard
tag, false to allow a sentence to cross across hard tags.
In many literary texts sentences do cross hard tag
(usually paragraph) boundaries, so this setting should
be set false.

xml.close_sentence_at_end_of_jump_tag
true to force a sentence to close at the end of a jump
tag, false to allow a sentence to cross across hard tags.
This setting should generally be set to true.

xml.disallow_word_elements_in=figDesc sic
Specifies the XML elements in which to disallow
generated and elements. Element names are separated
by blanks. The default list is figDesc sic.

xml.field_delimiters
Field delimiters for adorned word output. The default
is the Ascii tab character \t . This should not generally
be changed.

xml.fix_gap_tags
true to fix <gap> tags in XML texts, false to leave
them alone. In general, if the input texts are in TEI
Analytics format, this setting should be false.

xml.fix_orig_tags
true to fix <orig> tags in XML texts, false to leave
them alone. In general, if the input texts are in TEI
Analytics format, this setting should be false.

xml.fix_split_words

true to fix split words in XML texts, false to leave
them alone. The match patterns are regular expressions
specified by the settings xml.fix_split_words.match1,
xml.fix_split_words.match2, etc. The corresponding
corrections are specified by the settings
xml.fix_split_words.replace1,
xml.fix_split_words.replace2, etc. These patterns may
actually be used for more general purposes than
splitting or joining words. Examples of these settings
may be found in the eme.properties settings file in the
MorphAdorner release.

xml.id.attribute
The name of the XML word ID attribute. The default
value is xml:id.

xml.id.spacing

This setting gives the spacing between ID values. For
example, an increment of 10 spaces
reading_context_order or wordinblock values by 10.
This allows new values to be interpolated for editing
purposes. The default value is 10.

10/01/13 MorphAdorner Page 28

xml.id.type

Word IDs start with the work identifier, taken from the
file name of the work.

reading_context_order appends integer values whose
order gives the reading context order defined by the
classification of hard, soft, and jump tags.

word_within_page_block appends two integer values
in the the form pageblocknumber-wordinblock, where
pageblocknumber is the ordinal of the current (page
break) entry, and wordinblock is the number of the
word within the page block (starting at 1).

xml.ignore_tag_case
true to ignore the case of XML tags when processing
them, false to consider different tag case significant.
The default is true.

xml.jump_tags

The list of XML jump tags, separated by blanks.

MorphAdorner uses the following jump tags for the
default TEI Analytics XML input files.

bibl figdesc figDesc figure
footnote note ref stage
tailnote

xml.log
true to enable extended logging, false otherwise. The
default is false.

xml.output_nonredundant_attributes_only

true to emit only non-redundant word tag attributes,
false to emit all word attributes. A word attribute is
redundant if its value can be determined from the data
enclosed by the tags or from another tag value. By
default MorphAdorner emits all word tag values even
if redundant.

xml.output_nonredundant_token_attribute

true to emit only non-redundant token attributes, false
to emit all token attributes. A redundant token attribute
specifies the same text as the data enclosed by the tags.
By default MorphAdorner emits all token values even
if redundant.

xml.output_pseudo_page_boundary_mileston
es

true to emit XML pseudopage boundary milestone
elements, false to not emit these milestones.

xml.output_whitespace_elements
true to emit whitespace elements (e.g.,) between word
elements in XML, false to not emit these whitespace
elements. This setting should be true in most cases.

10/01/13 MorphAdorner Page 29

xml.pseudo_page_container_div_types

The list of XML tags which close a pseudopage,
separated by blanks.

MorphAdorner uses the following soft tags for the
default TEI Analytics XML input files.

volume chapter sermon

xml.pseudo_page_size
The maximum length in words of a pseudopage. The
default is 300 words.

xml.soft_tags

The list of XML soft tags, separated by blanks.

MorphAdorner uses the following soft tags for the
default TEI Analytics XML input files.

abbr add address author c cl
corr date emph foreign gap
hi l lb location m mentioned
milestone money name num
organization orig pb person
phr reg rs s sb seg sic
soCalled sub sup term time
title unclear w zzzzsw

xml.surround_marker
The marker character used internally for surrounding
distinct segments of text. Default is Unicode
character \ue501 . This should not be changed.

xml.tokenlabel.emit

True to emit a token label which contains an image
number for the current page, a letter for the current
column on the page, the word number multiplied by
the label spacing within the column. This is used when
adorning Text Creation Partnership texts to relate
words to the source page images.

xml.tokenlabel.attribute The token label attribute name. The default is n.

xml.token.label.spacing
Increment value for generating token labels. The
default is 10.

xml.token.label.prependworkname
Set to true to prepend the work name to the token
label. The default is false; the work name will not be
prepended to the token label.

xml.use_pc_to_mark_end_of_sentence
Add a unit="sentence" attribute to mark the end of a
sentence. This is the default in MorphAdorner v2 (in
v1, the eos was used instead).

10/01/13 MorphAdorner Page 30

xml.word_delimiters
Output word delimiters for adorned word output. The
default is Ascii \r\n . This should not be changed.

xml.word_tag_name
The name of the XML tag which is used to mark an
adorned output word. The default is w.

xml.xml_schema

The name of the default scheme used for parsing an
XML file when none appears in the XML text. For
MorphAdorner, the default is the TEI Analytics
scheme which appears at
http://morphadorner.northwestern.edu/morphadorner/s
chemata/TEIAnalytics.rng .

10/01/13 MorphAdorner Page 31

http://morphadorner.northwestern.edu/morphadorner/schemata/TEIAnalytics.rng
http://morphadorner.northwestern.edu/morphadorner/schemata/TEIAnalytics.rng

Part Four: Utilities
MorphAdorner provides a number of utility programs. The utility program names have fairly long Java
classpaths, and the utility name is in mixed case. To simplify their use, all of the utilities have
associated Windows batch files and Unix/Linux script files whose names are the utility name in
lowercase.

In the following program descriptions, the command lines for the utilities may be split across multiple
lines by your web browser or document reader. They should actually all appear on a single line. If you
need to split the command lines you should terminate each line before the last with the command line
continuation character for your operating system's command line shell. For Windows this is the caret
"^". For Unix/Linux this is usually the back slash "\".

Don't forget to mark the Unix script files as executable before using them. On most Unix/Linux
systems you can use the chmod command to do this, e.g.:

chmod 755 adornncfa

The MorphAdorner release contains a script makescriptsexecutable which applies chmod to each of
the scripts in the release. On most Unix-like systems you can execute makescriptsexecutable by
moving to the MorphAdorner installation directory and entering

chmod 755 makescriptsexecutable
./makescriptsexecutable

or

/bin/sh <makescriptsexecutable

10/01/13 MorphAdorner Page 32

Adding Character Offsets
AddCharacterOffsets creates derived MorphAdorner files with character offsets to word tokens.

Usage:

addcharacteroffsets adornedinput.xml adornedoutput.xml
unadornedoutput.xml

where

adornedinput.xml Standard MorphAdorner adorned output file.
adornedoutput.xml Derived adorned file with character offsets added to tags.
unadornedoutput.xml Derived unadorned file whose word offsets are given in adornedoutput.xml file.

The derived adorned output file adornedoutput.xml adds a cof= attribute to each <w> tag. The cof=
attribute specifies the character (not byte) offset of each word in the unadornedoutput.xml file. The
latter file removes the <w> and <c> tags from the adorned input file and outputs the word and
whitespace text as specified by the <w> and <c> tags. (Note that cof= is not recognized by the TEI
Analytics scheme.)

The source code for AddCharacterOffsets is interesting in that it shows how to process an adorned file
using regular expressions instead of a full XML parser.

10/01/13 MorphAdorner Page 33

Adding Pseudopages
AddPseudoPages adds pseudopage milestones to an adorned file.

Usage:

addpseudopages input.xml output.xml pseudopagesize
pageendingdivtypes

where

input.xml Input MorphAdorned XML file.

output.xml
Derived adorned file with pseudopage milestones added. N.B. Existing
pseudopage milestones are deleted before the new ones are added.

pseudopagesize The maximum number of words in each pseudopage. Default: 300 .

pageendingdivtypes
Blank separated list of <div> types which force the closure of a pseudopage.
Default: chapter volume sermon

The derived adorned output file output.xml has pseudopage milestone elements added approximately
every pseudopagesize words. No distinction is made between main and paratext when generating the
pseudopages. Each pseudopage starts with a milestone of the form:

<milestone unit="pseudopage" n="n"
position="start"></milestone>

and ends with a milestone element of the form:

<milestone unit="pseudopage" n="n"
position="end"></milestone>

The n is the pseudopage number.

Pseudopages can be used as a basis for constructing simple citation schemes and mechanisms for
orienting a reader in a text which is not otherwise divided into meaningful units such as pages. Adding
unclear attributes to words with gaps

10/01/13 MorphAdorner Page 34

Adding unclear attributes to words with gaps
AddUnclear adds a type="unclear" attribute to tokens containing character gaps in tokenized or
adorned TEI XML files.

Usage:

addunclear outputdirectory input1.xml input2.xml ...

where

• outputdirectory is the output directory containing the resultant XML files with type="unclear"
attributes added to tokens containing character gaps.

• input*.xml are the input tokenized XML files.

Character gaps in tokens are indicated by the presence of the unicode black circle (\u25CF) in a token.

10/01/13 MorphAdorner Page 35

Adorning Named Entities
AdornWithNamedEntities adorns XML texts with named entities such as person, location, time, date,
and organization. It is an experimental procedure based upon the Gate named entity extractor ANNIE
with a few modifications to improve its utility for literary purposes.

Usage:

adornwithnamedentities outputdirectory input1.xml
input2.xml ...

where

• outputdirectory -- output directory to receive xml files adorned with named entities.
• input*.xml -- input TEI XML files.

The named entity adorner does not always recognize entities which cross soft tags. Thus "Emma
Woodhouse" may be recognized as two separate entities. AdornedWithNamedEntities should be run on
the input files before their submission to MorphAdorner.

Gate uses the following XML tags for marking named entities. AdornWithNamedEntities maps these to
the TEI Analytics "<rs>" with a specific type= attribute value.

Gate TEI Analytics

<Date> for a date <rs type="date">

<Location> for a location <rs type="location">

<Money> for an amount of money <rs type="money">

<Organization> for an organization <rs type="organization">

<Person> for a person <rs type="person">

<Time> for a time <rs type="time">

Gate seems to generate "Date" where one might expect "Time" to appear.

In addition to the named entity types generated by Gate, AdornWithNamedEntities can also generate
<rs type="literary"> for literary references. This has not been fully implemented.

10/01/13 MorphAdorner Page 36

Applying an XSLT transformation to XML files

ApplyXSLT applies an XSL transformation to set of input XML files to produce transformed XML
files.

Usage:

applyxslt outputdirectory script.xsl input1.xml
input2.xml ...

where

outputdirectory
Output directory for files processed by applying the XSLT script to the input
files.

script.xsl XSLT script file.
input1.xml
input2.xml ...

Input xml files.

XSL transformations, specified in XSLT files, are widely used for modifying the contents of XML files.
The MorphAdorner Server (page 192) implements several of its facilities using XSL transformations,
including moving notes in TEI files to the end of <div> elements, and extracting the text from a TEI
file.

10/01/13 MorphAdorner Page 37

Comparing String Counts
CompareStringCounts compares two columnar files containing spellings and part of speech tags.

Usage:

comparestringcounts analysis.tab reference.tab

where

• analysis.tab is an input tab-separated file of strings and counts for an analysis text.
• reference.tab is an input tab-separated file of strings and counts for a reference text.

The analysis.tab and reference.tab files contain strings and counts of those strings compiled from two
texts or corpora. Both files contain two tab-separated columns. The first column is a string. The second
column contains the count of the number of times that string occurred in the associated text.

The output contains seven tab-separated columns, sorted in descending order by log-likelihood value.
One line of output appears for each string in the analysis text.

1. The first column contains the string. This may be a spelling, a lemma, a part of speech, a
spelling bigram, or any other string of interest.

2. The second column contains a "+" when the string is overused in the analysis text with respect
to the reference text, a "-" when the string is underused, and a blank when the string is used the
same amount in both texts.

3. The third column contains Dunning's log-likelihood value.
4. The fourth column shows the relative frequency of occurrence of the string in the analysis text

as fractional parts per ten thousand.
5. The fifth column shows the relative frequency of occurrence of the string in the reference text as

fractional parts per ten thousand.
6. The sixth column shows the number of times the string occurred in the analysis text.
7. The seventh column shows the number of times the string occurred in the reference text.

These results are written to the standard output file which can be redirected to another file. A brief
summary of the analysis is written to the standard error file.

Statistical Background

Comparisons tell you whether there is more of this here or less of that there. Knowing that individual
word forms in one text occur more or less often than in another text may help characterize some
generic differences between those texts. Statistics on how often the words occur add rigor and provide
a framework for judging whether the observed differences are likely or unlikely to have occurred by
chance, and so deserve futher attention and interpretation.

Log-likelihood for comparing texts

CompareStringCounts allows you to compare the frequencies of word occurrences in two texts and
obtain a statistical measure of the significance of the differences. CompareStringCounts uses the log-
likelihood ratio G2 , also known as Dunning's Log-Likelihood, as a measure of difference. To compute
G2, CompareStringCounts constructs a two-by-two contingency table of frequencies for each word.

10/01/13 MorphAdorner Page 38

Analysis Text Reference Text Total

Count of word form a b a+b

Count of other word forms c-a d-b c+d-a-b

Total c d c+d

The value of "a" is the number of times the word occurs in the analysis text. The value of "b" is the
number of times the word occurs in the reference text. The value of "c" is the total number of words in
the analysis text. The value of "d" is the total number of words in the reference text.

Given this contingency table, CompareStringCounts calculates the log-likelihood ratio statistic G2 to
assess the size and significance of the difference of a word's frequency of use in the two texts. The log-
likelihood ratio measures the discrepancy of the the observed word frequencies from the values which
we would expect to see if the word frequencies (by percentage) were the same in the two texts. The
larger the discrepancy, the larger the value of G2, and the more statistically significant the difference
between the word frequencies in the texts. Simply put, the log-likelihood value tells us how much more
likely it is that the frequencies are different than that they are the same.

The log-likelihood value is computed as the sum over all terms of the form "O * ln(O/E)" where "O" is
the observed value of a contingency table entry, "E" is the expected value under a model of
homogeneity for frequencies for the two texts, and "ln" is the natural log. If the observed value is zero,
we ignore that table entry in computing the total. CompareStringCounts calculates the log-likelihood
value G2 for each two-by-two contingency table as follows.

E1=c*(a+b)/(c+d)
E2=d*(a+b)/(c+d)
G2=2*((a*ln(a/E1)) + (b*ln(b/E2)))

To determine the statistical significance of G2, we refer the G2 value to the chi-square distribution with
one degree of freedom. The significance value tells you how often a G2 as large as the one
CompareStringCounts computed could occur by chance. For example, a log-likelihood value of 6.63
should occur by chance only about one in a hundred times. This means the significance of a G2 value of
6.63 is 0.01 .

References

Ted Dunning's paper discusses the use of the log-likelihood test for general textual analysis.

• Dunning, Ted. 1993. Accurate Methods for the Statistics of Surprise and Coincidence.
Computational Linguistics, Volume 19, number 1, pp. 61-74.

Rayson and Garside discuss the use of the log-likelihood test for comparing corpora.

• Rayson, P. and Garside, R. 2000. Comparing corpora using frequency profiling. In Proceedings
of the workshop on Comparing Corpora, held in conjunction with the 38th annual meeting of
the Association for Computational Linguistics (ACL 2000). 1-8 October 2000, Hong Kong.

10/01/13 MorphAdorner Page 39

Comparing Adorned Files
CompareAdornedFiles compares two adorned files and writes a change log indicating the differences
between the two.

Usage:

compareadornedfiles oldadorned.xml newadorned.xml diffs.xml

where

• oldadorned.xml is the "old" adorned TEI XML file.

• newadorned.xml is the "new" (modified) version of the adorned file.

• diffs.xml is the file name to receive the change log of the token-based differences from the old to
the new adorned file.

Change Log Format

CompareAdornedFiles uses a simple XML format to contain a list of token-based changes. The format
of this file is as follows.

<ChangeLog>
 <changeTime>The time the change file was created.</changeTime>
 <changeDescription>A description of the changes.</changeDescription>
 <changes>
 <change>
 <id>xml:id of token to be changed.</id>
 <changeType>addition, modification, or deletion.</changeType>
 <fieldType>Type of field to change: text or attribute.</fieldType>
 <oldValue>Old field value.</oldValue>
 <newValue>New field value.</newValue>
 <siblingID>xml:id of sibling word for a word being added.</siblingID>
 <blankPrecedes>true if blank precedes the token, else false.</blankPrecedes>
 </change>
 ...
 (more <change> entries)
 ...
 </changes>
</ChangeLog>

This simple XML formatted change file allows a file to be transformed to a corrected file using a utility
in the MorphAdorner suite. A file can be "untransformed" from the corrected version to the uncorrected
version using the same change file. A likely use case for the change log is an edition that wants to use
long 's' and other original spellings.

10/01/13 MorphAdorner Page 40

Here is an example of a change log entry which records the replacement of a long "s" with a plain "s".

<ChangeLog>
 <changeTime>2013-07-09 13:04:17.149 CDT</changeTime>

 <changeDescription>Changes from \tokenized\K000379.000.xml to \tokenized-no-
wordbreaks\K000379.000.xml as determined by CompareAdornedFiles.</changeDescription>
 <changes>
 <change>
 <id>K000379_000-00080</id>
 <changeType>modification</changeType>
 <fieldType>text</fieldType>
 <oldValue>Addreſs'd</oldValue>
 <newValue>Address'd</newValue>
 <blankPrecedes>true</blankPrecedes>
 </change>
 ...
 </changes>
</ChangeLog>

A change log may be used to transform one version of an adorned file into another using the
UpdateAdornedFile (page 74) utility.

10/01/13 MorphAdorner Page 41

Comparing Tabular Files
TagDiff compares two columnar files containing spellings and part of speech tags.

Usage:

tagdiff input1.tab postagcol1 input2.tab postagcol2

where

• input1.tab is an input tab-separated file containing spellings in the first column and parts of
speech in the second column. Usually this is a reference (training) file in which the part of
speech assignments are known to be correct.

• postagcol1 is the column number (starting at 1) which contains the part of speech tags in the
first file.

• input2.tab is an input tab-separated file containing spellings in the first column and parts of
speech in the second column. Usually this is a file produced by MorphAdorner or some other
part of speech tagger.

• postagcol2 is the column number (starting at 1) which contains the part of speech tags in the
second file.

The two files must have the exact same number of lines and the same exact spellings, in order, in
column one. However, blank lines are ignored in both files.

TagDiff writes a report to the standard system output file tallying the numbers and types of differences
in the part of speech assignments provided by each file. If the first file is a reference file, this allows
you to see how well the part of speech tagger reproduced the reference tagging. A good part of speech
tagger for English normally gets at least 96% of the tags correct.

10/01/13 MorphAdorner Page 42

Converting an adorned file to Sketch engine format
AdornedToSketch converts one or more adorned files to the verticalized input required by the Sketch
or NoSketch corpus search engines.

Usage:

adornedtosketch sketchinput.txt corpusname adorned1.xml
adorned2.xml ...

where

• sketchinput.txt specifies the output filename of the verticalized representation required for
input to the Sketch or NoSketch engines.

• corpusname specifies the corpus name to be used when creating the Sketch engine input.
• adorned1.xml adorned2.xml ... specifies the input MorphAdorned XML files from which to

produce the Sketch engine input.

Known flaw: AdornedToSketch does not generate the "glue" elements which bind punctuation marks to
word tokens. Searching the corpus still works fine in the Sketch or NoSketch engine, but the
punctuation marks are displayed detached from any token to which they would normally be attached.

The Sketch engine, and its simpler sibling the NoSketch engine, are corpus query systems based upon
the thesis work of Pavel Rychlý. The engines are products of Lexical Computing Ltd., headed by
computational linguist Adam Kilgarriff.

10/01/13 MorphAdorner Page 43

Converting an adorned file to TCF format
AdornedToTCF04 converts one or more adorned files to the Text Corpus Format (TCF) v0.4 used by
the CLARIN-D project.

Usage:

adornedtotcf04 outputdirectory adorned1.xml adorned2.xml ...

where

• outputdirectory specifies the output directory to receive the TCF v0.4 formatted files.
• adorned1.xml adorned2.xml ... specifies the input MorphAdorned XML files from which to

produce the TCF v0.4 versions.

The Text Corpus Format (TCF) is used by the European CLARIN-D project to allow interchange of
corpora among different web-based services. TCF is an XML-based format which consists of a plain
text representation of a work along with a series of annotation layers.

AdornedToTCF04 converts one or more MorphAdorned TEI XML files to TCF format. The text
(without tags) is extracted and output, along with the following annotation layers:

• Tokens (using the MorphAdorner word IDs)
• Lemmata
• Part of speech tags
• Sentences

10/01/13 MorphAdorner Page 44

http://weblicht.sfs.uni-tuebingen.de/weblichtwiki/index.php/The_TCF_Format

Converting a base adorned file to a simple TEI P5-like format
AdornedToSimpleTEIP5 converts a base-level MorphAdorner file to a simpler, more TEI P5-like
format.

Usage:

adornedtosimpleteip5 outputdirectory [usereg|usechoice]
interpgrp.xml goodfiles.txt badfiles.txt adorned1.xml
adorned2.xml ...

where

• outputdirectory specifies the output directory for the base adorned XML files.
• usereg specifies that the standardized spelling should be emitted as a reg= attribute, while

usechoice specifies that the standardized spelling should be emitted using TEI <choice>
structure.

• interpgrp.xml specifies the file name for a section of TEI XML which defines an interpGrp
element for the part of speech tags. This can be an empty file in which case the interpGrp is not
added to each output TEI XML file.

• goodfiles.txt specifies the name of a file to receive the names of TEI XML files successfully
converted to simple TEI P5 format.

• badfiles.txt specifies the name of a file to receive the names of TEI XML files which could not
be successfully converted to simple TEI P5 format.

• adorned1.xml adorned2.xml ... specifies the input MorphAdorned XML files from which to
produce simple TEI P5 versions.

AdornedToSimpleTEIP5 converts the base form of an adorned TEI file, which adds custom attributes
to word <w> elements, to a simpler more TEI P5 compatible format as follows.

• The pos attribute, which specifies the part of speech, is changed to the P5 standard ana attribute.
The part of speech is prefixed with a "#".

• The lem attribute, which specifies the lemma (headword) for the word, is changed to the P5
standard lemma attribute.

• The reg attribute, which specifies the modernized spelling, is handled as described below.
• The other non-standard attributes ord, spe, tok, etc. are dropped.

In standard TEI P5 you cannot store a standardized spelling in a reg attribute. One approach is to use a
combination of <choice>, <orig>, and <reg> elements to make each <w> element carry its part of a
double stream of original and standardized spellings, as in this adorned encoding of "wylle anone" from
an early 16th century text:

 <w xml:id ="someid1" lemma="will" ana="#vmb">
 <choice>
 <orig>wylle</orig>
 <reg>will</reg>
 </choice>
 </w>
 <w xml:id ="someid2" lemma="anon" ana="#av">>
 <choice>
 <orig>anone</orig>
 <reg>anon</reg>

10/01/13 MorphAdorner Page 45

 </choice>
 </w>

Alternatively, you can customize P5 and restore a reg attribute that lets you encode the same
phenomena in a manner that programmers -- and in particular programmers with limited skills -- are
likely to find more intuitive and economical:

<w xml:id ="someid1" lemma="will" reg= "will" ana="#vmb">wylle</w>
<w xml:id ="someid2" lemma="anon" reg ="anon" ana="#av">anone</w>

For many purposes using an attribute is preferable to a choice element because the attribute leaves the
token sequence undisturbed, and the added attribute value can be stored in the standard MorphAdorner
change log format.

AdornedToSimpleTEIP5 allows you to use either of these two approaches.

• Select AdornedToSimpleTEIP5's usechoice option to store the standard spelling using a
<choice> structure.

• Select AdornedToSimpleTEIP5's usereg option to store the standard spelling using a reg
attribute.

Important: Many other MorphAdorner utilities do not yet work properly with simplified adorned texts
created using the <choice> structure.

Defining the parts of speech using an interGrp element

Strictly speaking, a TEI interpGrp element should be added to each TEI XML output file to specify the
definitions for the parts of speech used. The MorphAdorner release materials include a
nuposinterpgrp.xml file in the release data/ directory which defines an interpGrp for the NUPos tag
set. This file can be specified as the value of AdornedToSimpleTEIP5's interpgrp.xml parameter.

10/01/13 MorphAdorner Page 46

Correcting Quote Marks
FixXMLQuotes attempts to convert straight double quotes (Ascii/Unicode 34) into "curly" left and
right double quotes (Unicode 8220 and 8221 respectively). It also attempts to convert straight single
quotes (Ascii/Unicode 39) into "curly" left and right single quotes (Unicode 8216 and 8217
respectively) and to distinguish these from the use of the single quote as an apostrophe. FixXMLQuotes
makes mistakes, so its output should be corrected manually. FixXMLQuotes accepts XML files in TEI
format as input.

Usage:

fixxmlquotes softtags.txt jumptags.txt outputdirectory
input1.xml input2.xml ...

where

• softtags.txt specifies a text file containing list of soft XML tags, one per line. A sample is
included as part of the MorphAdorner distribution.

• jumptags.txt specifies a text file containing list of jump XML tags, one per line. A sample is
included as part of the MorphAdorner distribution.

• outputdirectory specifies the output directory to receive xml files with quote marks fixed.
• input*.xml specifies the input TEI XML files.

For each of the input XML files, FixXMLQuotes attempts to correct the quotes and writes a corrected
XML file of the same name in the specified output directory.

The companion FixQuotes program provides the same approach to correcting quote marks, but for
plain text files instead of XML files.

Usage:

fixquotes input.txt output.txt

where

• input.txt specifies the input text file with quote marks to correct.
• output.txt specifies the output text file with quote marks fixed.

At best fixxmlquotes and fixquote correct 90% of the quotes. The remainder need to be corrected
manually.

10/01/13 MorphAdorner Page 47

Counting Affixes in an Adorned Text
CountAffixes counts affixes (suffixes and prefixes) of adorned words by processing MorphAdorned
XML output.

Usage:

countaffixes input.xml prefixes.tab suffixes.tab

where

• input.xml -- input XML file produced as output by MorphAdorner.
• prefixes.tab -- output tab-separated prefixes file described below.
• suffixes.tab -- output tab-separated suffixes file described below.

Both the prefixes.tab and suffixes.tab output files contain two tab-separated columns. The first column
is a prefix or suffix string, respectively, and the second column contains the count of the number of
times that prefix or suffix occurred in the unique words in the input.xml file.

Why do we care about affixes? Affixes of one kind or another are a good proxy for etymologies -- at
least in English. In some ways they are better, because the affix is part of the writer's or reader's
repertoire in a way in which knowledge of etymologies is not. The distribution of word etymologies --
or affixes -- offers one way of studying an author's style.

For example, R. Harald Baayen argues that 'ation' is a distinctive suffix and is characteristic of the
Latinate and Johnsonian streak in Jane Austen's writing. A study of affix distributions for other authors
may reveal similar interesting patterns.

10/01/13 MorphAdorner Page 48

Counting Words In An Adorned Text
CountAdornedWords tabulates counts of adorned words from XMLToTab (page 77) output files.

Usage:

countadornedwords output.tab input.tab input2.tab ...

where

• output.tab is the output tab-separated count file.
• input*.tab are the input tabbed files produced by XMLToTab (page 77).

The output file is a tab-delimited utf-8 encodded text file containing the following fields, in order.

1. Short work name, formed from input file name by stripping the path and file extension.
2. The corrected original spelling.
3. The standard spelling.
4. The parts of speech.
5. The lemmata.
6. The count of the tuple (work name, corrected spelling, standard spelling, parts of speech,

lemmata).

This output provides a "bag of words" for each input text which can then be input to a database or
spreadsheet for further analysis.

10/01/13 MorphAdorner Page 49

Creating A Lexicon
CreateLexicon creates word and suffix lexicons from training data.

Usage:

CreateLexicon trainingdata.tab wordlexicon.lex
suffixlexicon.lex maxsuffixlength maxsuffixcount

where

• trainingdata.tab specifies the name of the file containing the part of speech training data from
which the word lexicon and suffix lexicon are built.

The word lexicon contains each spelling (and standard spellings if provided), the count for each
spelling, the parts of speech for each spelling, the counts for each part of speech for each
spelling, and the lemma for each part of speech for each spelling (if provided). The suffix
lexicon contains a list of suffixes, their counts, and the parts of speech associated with each
suffix and the count of each part of speech. Lemmata are stored as a "*' in the suffix lexicon
since there are no lemmata for suffixes.

The training data resides in a utf-8 text file. Each line contains one tab-separated spelling along
with its part of speech tag and optionally its lemma and standard spelling in the form:

spelling {tab} part-of-speech-tag {tag} lemma {tag}
standard spelling

where "{tab}" specifies an Ascii tab character.

You must specify a spelling and a part of speech tag. The lemma and standard spelling are
optional. If you wish to specify a standard spelling without specifying a lemma, enter the lemma
as "*".

Blanks lines are used to separate sentences. While the blank lines are not needed for creating the
lexicon, they are needed for creating probability transition matrices and for part of speech
tagging.

The lexicon is built using both the spelling and the standard spelling (when provided). The
lemma is also stored when present.

• wordlexicon.lex specifies the name of the output file to receive the word lexicon.

• suffixlexicon.lex specifies the name of the output file to receive tthe suffix lexicon.

• maxsuffixlength specifies the maximum length suffix generated for the suffix lexicon. The
default is 6 characters.

• maxsuffixcount specifies the maximum number of times a spelling must appear in order for its
suffix to be added to the suffix lexicon. The default is to include all words regardless of count.

For some applications you may want to restrict the suffix lexicon to contain suffixes only for
infrequently occurring words. Values of 10 (only include spellings which appear 10 or less
times in the training data) or 1 (only include spellings which appear once in the training data)
are popular choices.

10/01/13 MorphAdorner Page 50

Creating a Suffix Lexicon
CreateSuffixLexicon creates a suffix lexicon from a word lexicon.

Usage:

createsuffixlexicon inputwordlexicon.lex suffixlexicon.lex
maxsuffixlength maxsuffixcount allowedpostagsfilename

where

• inputwordlexicon.lex specifies the name of an input word lexicon in MorphAdorner format to
receive the word lexicon.

• suffixlexicon.lex specifies the name of the output file to receive tthe suffix lexicon.

• maxsuffixlength specifies the maximum length suffix generated for the suffix lexicon. The
default is 6 characters.

• maxsuffixcount specifies the maximum number of times a spelling must appear in order for its
suffix to be added to the suffix lexicon. The default is to include all words regardless of count.

For some applications you may want to restrict the suffix lexicon to contain suffixes only for
infrequently occurring words. Values of 10 (only include spellings which appear 10 or less
times in the training data) or 1 (only include spellings which appear once in the training data)
are popular choices.

• allowedpostagsfilename specifies the name of a file containing a list of part of speech tags to
use when constructing the suffix lexicon. Omit the tags for parts of speech for closed word
classes to which new words should not be added. The MorphAdorner release provides the file
nuposallowedpostags.txt in the release data directory which defines a default set of NUPos tags
to use when creating a suffix lexicon.

The suffix lexicon is used by the part of speech taggers to guess the potential parts of speech for
unknown words which do not appear in the word lexicon. For each successively shorter ending
substring of the unknown word, the guesser looks up that substring in the suffix lexicon. When the
substring exists in the suffix lexicon, the guesser assigns its associated parts of speech to the unknown
word.

10/01/13 MorphAdorner Page 51

Extracting Abbreviation Using PUNKT
PunktAbbreviationDetector finds abbreviations in a set of untagged utf-8 encoded texts using the
Punkt algorithm of Tibor Kiss and Jan Strunk.

The Punkt algorithm adapts collocation extraction methodology to the problem of determining when a
period-terminated token is an abbreviation. For each token ending with a period, PUNKT compiles
counts of the occurrences of the token with and without the trailing period. When the token appears
statistically far more often with a period than without, it is a candidate abbreviation. Some additional
heuristics refine the selection process.

This algorithm works well for English and other Western European languages. Its main weakness is
that it fails when the collection of texts being analyzed contains many instances in which genuine
abbreviations appear without the terminating period. Biblical references in early modern English texts
provide a good example. Biblical book names that are abbreviated often do not end with a period. As a
result, Biblical book name abbreviations in early texts will typically not be recognized as abbreviations.

Usage:

punktabbreviationdetector isolangcode abbrevs.txt text1.txt
text2.txt ...

where

• isolangcode specifies the two or three character ISO language code in which the texts to be
analyzed are written.

• abbrevs.txt specifies the name of the output file to receive the abbreviations extracted from the
texts.

• text1 text2 ... specify the names of utf-8 encoded text files from which to extract potential
abbreviations.

Reference

Kiss, Tibor and Strunk, Jan (2006). Unsupervised Multilingual Sentence Boundary Detection.
Computational Linguistics 32: 485-525.

10/01/13 MorphAdorner Page 52

Extracting text from a TEI XML file
ExtractTEIText applies an XSL transformation to an input TEI XML file to extract the text from the
body of the file.

Usage:

extractteitext input.xml output.xml

where

input.xml The input TEI XML file.
output.txt The output file containing the text extracted from the input TEI file.

The XSLT transformation used to extract the text is defined in the tei2text.xsl file in the xslt directory
of the MorphAdorner release. This transformation works well for unadorned TEI files, not so well for
adorned files. You can use the Unadorn (page 74) utility to unadorn an adorned file before extracting
the text.

10/01/13 MorphAdorner Page 53

Finding Languages in which a TEI Encoded Text is Written
FindTeiTextLanguage determines the language(s) in which a TEI text is written.

Usage:

findteitextlanguage output.tab input1.xml input2.xml ...

where

• output.tab -- output tab-separated values file described below.
• input*.xml -- input TEI XML files whose language is to be found.

The output file is a tab-delimited utf-8 text file containing the following fields, in order.

1. The original XML file name.
2. The length of the plain text from the TEI file, ignoring XML markup, in characters.
3. The most likely language.
4. The language recognizer score for the most likely language.
5. The second most likely language.
6. The language recognizer score for the second most likely language.
7. The third most likely language.
8. The language recognizer score for the third most likely language.

Texts which do not have at least three recognizable languages will have missing language names set to
blank with a score of zero.

Language recognizer scores range from 0.0 (not a match) to 1.0 (perfect match). Documents for which
the second and third languages achieve non-negligible scores indicate potential problems for processing
unless the words in the secondary language are marked up in the TEI document.

10/01/13 MorphAdorner Page 54

Fixing Superscripts
SuperFixer marks "^" characters with special tags. The "^" is used to mark superscripted characters in
Text Creation Partnership files.

Usage:

superfixer outputdirectory input1.xml input2.xml ...

where

• outputdirectory is the output directory containing the resultant XML files.

• input*.xml are the input TEI XML files.

<zzzzlj>token</zzzzlj> is added to surround tokens containing "^" superscript markers. MorphAdorner
removes these non-standard markers during the adornment process.

Tokens which end in ^d where "d" is a single digit are converted to the token followed by a “d”. This
provides for inserting the missing targets of these apparent note references at a later editing stage.

10/01/13 MorphAdorner Page 55

Generating Tag Transition Probabilities
NGramTaggerTrainer merges the contents of multiple word list files into a single file. A word list file
contains a list of words, one word on each line.

Usage:

ngramtaggertrainer trainingdata.tab wordlexicon.lex
transitionmatrix.mat

where

• trainingdata.tab -- input training data file.
• wordlexicon.lex -- input MorphAdorner lexicon.
• transitionmatrix.mat -- output tag transition matrix file.

The training data file is a tab-separated utf-8 file containing the part of speech training data generated
from the training texts. We only use the first two columns of the training data.

1. The original token (spelling).
2. The NUPOS part of speech.

The word lexicon is a MorphAdorner format word lexicon.

The output tag transition file is a utf-8 file containing the data needed by the MorphAdorner bigram
and trigram taggers.

Merging Annolex corrections with adorned TEI XML
AnnoLex is a collaborative data curation tool for use with Text Creation Partnership texts. Annolex
allows for the identification and correction of incompletely or incorrectly transcribed words. It can also
be used for the manual correction of algorithmically applied lemmatization and part-of-speech tagging.
Annolex was developed by Craig Berry and Martin Mueller.

MergeAnnolexCorrectionsIntoAdornedXML merges corrections developed in Annolex back into the
source adorned TEI XML files.

Usage:

mergeannolexcorrectionsintoadornedxml correctionsdirectory
outputdirectory inputfiles

where

• correctionsdirectory is the input directory with Annolex correction files in tabular format.
• outputdirectory is the output directory for the corrected adorned TEI XML files.
• inputfiles contains the input adorned XML files with which to merge the AnnoLex produced

corrections. These must be in the base adorned format, not the simplified TEI P5 format.

The corrections file is a tab-separated utf-8 file containing the following columns.

1. Work ID.
2. Word ID.
3. Old spelling.

10/01/13 MorphAdorner Page 56

http://annolex.at.northwestern.edu/

4. Corrected spelling.
5. Standard spelling.
6. Corrected lemmata.
7. Corrected parts of speech.
8. Operation: 1=update, 2=insert, 3=delete, 5=delete nearest gap.

The corrected spelling, lemmata, and parts of speech may all be empty when the operation is 3 (delete).

The value of the "ord" (word ordinal) attribute for each word is adjusted to account for inserted and
deleted words. The value of the "reg" (standard spelling) and "tok" attributes (original token) are
generated as needed for updated and inserted words.

Whitespace markers " " are added and deleted as needed when tokens are added or deleted. In general,
most added punctuation and symbols do not require added whitespace markers. When tokens are
deleted, sequences of "<c> </c><c> </c> ..." are compressed to a single "<c> </c>" entry.

10/01/13 MorphAdorner Page 57

Merging a Brill Lexicon
MergeBrillLexicon merges the contents of a Brill format lexicon with a MorphAdorner format lexicon
into a combined MorphAdorner lexicon.

Usage:

mergebrilllexicon lexicon.lex brilllexicon.txt
mergedlexicon.lex

where

• lexicon.lex -- input MorphAdorner format word lexicon.
• brilllexicon.txt -- input Brill format word lexicon to be merged with MorphAdorner word

lexicon.
• mergedlexicon.lex -- output merged lexicon in MorphAdorner format.

A Brill lexicon is a simple utf-8 formatted text file containing words and their possible part of speech
tags. Each word appears on a separate line. The first token on each line is the word. The remaining
tokens are the potential parts of speech for the word, separated by blanks or tab characters. The most
commonly occurring part of speech should be the first one listed.

word pos1 pos2 pos3 …

This type of lexicon was popularized by Eric Brill's part of speech tagger in the early 1990s.

The Brill entries are merged with the input MorphAdorner lexicon to produce an updated output
MorphAdorner format lexicon. The first part of speech for each word is added with a could of two,
while the remaining words are added with a count of one. The default English lemmatizer is used to
determine lemmata for the Brill words. When a word to be added already exists in the MorphAdorner
lexicon, only the new parts of speech are added to the existing lexicon entry.

Brill lexicons are convenient for adding large lists of words such as proper and place names, foreign
language words, and so on. Here is a small section of a sample Brill lexicon.

Yellott np1
Yellowby np1
Yellville np1
Yelton np1
Yelverton np1
lieu fw-fr
lieux fw-fr
lire fw-fr
lit fw-fr
literary j
livre fw-fr
livres fw-fr

MorphAdorner also defines an enhanced Brill lexicon which provides the lemmata for each word's
parts of speech. Merging an Enhanced Brill Format Lexicon (page 59) shows how to merge an
enhanced Brill lexicon into a MorphAdorner lexicon.

10/01/13 MorphAdorner Page 58

Merging an Enhanced Brill Format Lexicon
MergeEnhancedBrillLexicon merges the contents of an enhanced Brill format lexicon with a
MorphAdorner format lexicon into a combined MorphAdorner lexicon.

Usage:

mergeenhancedbrilllexicon lexicon.lex
enhancedbrilllexicon.txt mergedlexicon.lex

where

• lexicon.lex -- input MorphAdorner format word lexicon.
• enhancedbrilllexicon.txt -- input enhanced Brill format word lexicon to be merged with

MorphAdorner word lexicon.
• mergedlexicon.lex -- output merged lexicon in MorphAdorner format.

An enhanced Brill lexicon is a simple utf-8 formatted text file containing words and their possible part
of speech tags along with the lemma for each part of speech. Each word appears on a separate line. The
first token on each line is the word. The remaining tokens are a a set of pairs of potential parts of
speech for the word, followed by a blank, followed by the lemma for that word and part of speech. The
most commonly occurring part of speech should be the first one listed.

word pos1 lemma1 pos2 lemma2 pos3 lemma3 …

This type of lexicon is an enhancement over the simple lexicon format popularized by Eric Brill's part
of speech tagger in the early 1990s. The original Brill lexicon did not provide for specifying the
lemmata.

The enhanced Brill entries are merged with the input MorphAdorner lexicon to produce an updated
output MorphAdorner format lexicon. The first part of speech for each word is added with a could of
two, while the remaining words are added with a count of one. When a word to be added already exists
in the MorphAdorner lexicon, only the new parts of speech are added to the existing lexicon entry.

Enhanced Brill lexicons are convenient for adding large lists of words such as proper and place names,
foreign language words, and so on. Here is a small section of a sample enhanced Brill lexicon.

Chippewas np2 Chippewa
mor'n d|cs more|than
quicker'n jc|cs quick|than
y'r po22 you
you'se pn22|vbb you|be
youv'e pn22|vhb you|have

Merging a Brill Lexicon (page 58) show how to merge a simple Brill lexicon into a MorphAdorner
lexicon. A simple Brill lexicon only provides the list of parts of speech for each word, not the lemmata.

10/01/13 MorphAdorner Page 59

Merging Annolex corrections with adorned TEI XML files
AnnoLex is a collaborative data curation tool for use with Text Creation Partnership texts. Annolex
allows for the identification and correction of incompletely or incorrectly transcribed words. It can also
be used for the manual correction of algorithmically applied lemmatization and part-of-speech tagging.
Annolex was developed by Craig Berry and Martin Mueller.

MergeAnnolexCorrectionsIntoAdornedXML merges corrections developed in Annolex back into the
source adorned TEI XML files.

Usage:

MergeAnnolexCorrectionsIntoAdornedXML correctionsdirectory
outputdirectory inputfiles

where

• correctionsdirectory is the input directory with Annolex correction files in tabular format.
• outputdirectory is the output directory for the corrected adorned TEI XML files.
• inputfiles contains the input adorned XML files with which to merge the AnnoLex produced

corrections. These must be in the base adorned format, not the simplified TEI P5 format.

The corrections file is a tab-separated utf-8 file containing the following columns.

1. Work ID.
2. Word ID.
3. Old spelling.
4. Corrected spelling.
5. Standard spelling.
6. Corrected lemmata.
7. Corrected parts of speech.
8. Operation: 1=update, 2=insert, 3=delete, 5=delete nearest gap.

The corrected spelling, lemmata, and parts of speech may all be empty when the operation is 3 (delete).

The value of the "ord" (word ordinal) attribute for each word is adjusted to account for inserted and
deleted words. The value of the "reg" (standard spelling) and "tok" attributes (original token) are
generated as needed for updated and inserted words.

Whitespace markers " " are added and deleted as needed when tokens are added or deleted. In general,
most added punctuation and symbols do not require added whitespace markers. When tokens are
deleted, sequences of "<c> </c><c> </c> ..." are compressed to a single "<c> </c>" entry.

10/01/13 MorphAdorner Page 60

http://annolex.at.northwestern.edu/

Merging Spelling Data
MergeSpellingData merges the contents of multiple spelling map files into a single spelling map file.

A spelling map file is a utf-8 file containing two fields separated by a tab character. The first field is a
variant spelling. The second field is the standardized spelling for the variant.

Usage:

mergespellingdata output.tab input.tab input2.tab ...

where

• output.txt -- output merged spelling map file.
• input*.txt -- input text files containing spelling maps to be merged.

Each input spelling map is a utf-8 file contain two fields separated by a tab character. The first field is a
variant spelling. The second field is the standardized spelling for the variant.

The output file is a utf-8 text file containing the merged spelling maps from the input files. When a
given variant appears more than once with different standardized spellings in the input files, the last
mapping encountered is the one written to the output file.

10/01/13 MorphAdorner Page 61

Merging Text Files
MergeTextFiles merges (vertically concatenates) a series of text files into a single output text file.

Usage:

mergetextfiles output.txt input.txt input2.txt ...

where

• output.txt -- output merged text file.
• input*.txt -- input text files to be merged.

The output file is a utf-8 text file containing the merged content of the input utf-8 files.

10/01/13 MorphAdorner Page 62

Merging Word Lists
MergeWordLists merges the contents of multiple word list files into a single file. A word list file
contains a list of words, one word on each line.

Usage:

mergewordlists output.txt input.txt input2.txt ...

where

• output.txt -- output merged word list file.
• input*.txt -- input text files containing word lists to be merged.

The output file is a utf-8 text file containing the merged word list from the input files. Only one copy of
a word is output if it appears multiple times. The merged words appear in ascending alphanumeric
order in the output file.

10/01/13 MorphAdorner Page 63

Moving notes in TEI XML files
MoveTEINotes applies an XSL transformation to an input TEI XML file to move all the notes to a
separate <div> element.

Usage:

moveteinotes input.xml output.xml

where

input.xml The input TEI XML file.
output.txt The output file TEI XML file with the notes moved to a separate <div> element.

In printed source texts, <note> elements generally do not interrupt the reading order, because all the
notes are either placed in the margin or at the bottom of the page. In the XML transcriptions of the
source texts, the <note> elements may be encoded inline, because that is a onvenient thing to do.

Some linguists suggest that it is best to keep notes out of the flow of the text by moving them to a
separate "notes only" <div> element.

MoveTEINotes reorganizes unadorned or adorned TEI XML files so that notes are moved to a <div
type="notes"> in the <back> section at the end of the main <div> in which they occur. Original
instances of the notes are replaced by a <ptr> element which points to the location of the relocated
<note> element. An example of such a <ptr> element is:

<ptr type="note" target="nd1e8415" xml:id="rd1e8415" n="1"/>

The target= attribute gives the xml:id of the transplanted <note>. The xml:id provides the back link
needed to restore the original note position give the transplanted note.

The XSLT transformation used to move the notes is defined in the movenotes.xsl file in the xslt
directory of the MorphAdorner release. This transformation is based upon one originally written by
Syd Bauman.

10/01/13 MorphAdorner Page 64

Processing Soft Hyphens
The Text Creation Partnership (TCP) transcriptions do not record line breaks in the printed originals.
They do, however record "soft" hyphens where a word straddles two lines. The pipe character or
vertical bar is used to mark such line breaks as in "wind|ing".

Word breaks at line endings are not always marked with a hyphen in the printed originals. Transcribers
were asked to supply missing soft hyphens with a '+' sign. Sometimes they did, sometimes they didn't.
Unmarked word breaks, especially in marginal notes, are a very common feature of the TCP texts.

The soft hyphens of the SGML transcriptions of the printed texts are treated according to the following
protocol after conversion to TEI XML format.

1. If a spelling with a soft hyphen occurs elsewhere in the work or corpus as an unhyphenated
spelling, the soft hyphen is removed.

2. If a spelling with a soft hyphen occurs elsewhere with a hyphen, the soft hyphen is replaced
with a true hyphen.

3. If a spelling with a soft hyphen does not occur elsewhere either in a hyphenated or
unhyphenated form and both word parts can serve as independent words the soft hyphen is
replaced with a true hyphen.

4. If a spelling with a soft hyphen does not occur elsewhere either in a hyphenated or
unhyphenated form and the word parts are not independent words the soft hyphen is removed.

This replacement algorithm is implemented by a sequence of utilities after all the XML files are
tokenized. This is necessary to get the complete list of tokens for determining how often a word
appears with or without a real hyphen in the corpus. These utilities are applied only for TCP texts and
are not particularly useful in general.

1. Count words with word breaks using
edu.northwestern.at.morphadorner.tools.tcp.CountDividedWords.

2. Figure out which words should have word breaks using
edu.northwestern.at.morphadorner.tools.tcp.FindSoftHyphens then
edu.northwestern.at.morphadorner.tools.tcp.ExtractSoftHyphens.

3. Substitute real hyphens for soft hyphens in words which should be hyphenated. Other soft
hyphens are removed:
edu.northwestern.at.morphadorner.tools.tcp.FixWordBreaks.

10/01/13 MorphAdorner Page 65

Relemmatizing an Adorned File
Relemmatize updates lemmata and standard spellings in MorphAdorned XML files.

Usage:

relemmatize lexicon.lex spellingmap.tab
spellingsbywordclass.txt standardspellings.txt
outputdirectory adornedinput.xml adornedinput2.xml ...

where

• lexicon.lex -- Input MorphAdorner lexicon file.
• spellingmap.tab -- Two column tab-separated spelling map file. First column is a variant

spelling and the second column is the standard spelling.
• spellingsbywordclass.tab -- A spelling map file which breaks down the variant to standard

spellings by word class.
• standardspellings.txt -- File containing standard known spellings.
• outputdirectory -- Output directory for updated MorphAdorner adorned XML files.
• adornedinput*.xml -- MorphAdorner adorned XML output files.

The MorphAdorner release provides two specialized versions of the relemmatize command. To
relemmatize using the Early Modern English data:

relemmatizeeme outputdirectory adornedinput.xml
adornedinput2.xml ...

To relemmatize using the Nineteenth Century Fiction data:

relemmatizencf outputdirectory adornedinput.xml
adornedinput2.xml ...

The lemmata and standard spellings for each adorned word in the input XML files are updated with the
most current values. The updated XML files are written to the outputdirectory directory.

The source code for Relemmatize provides an example of reading an adorned XML file and modifying
it using a SAX filter.

10/01/13 MorphAdorner Page 66

Removing cruft from TEI XML file
RemoveCruft cleans Text Creation Partnership TEI XML files by replacing long "s" characters with
regular "s", removing brace-enclosed entities and certain superscripts, splitting ligatures into separate
characters, and so on.

Usage:

removecruft outputdirectory superscriptmap.tab input1.xml
input2.xml ...

where

• outputdirectory is the output directory containing the resultant XML files.
• superscriptmap.tab is a two-column tab-separated file. The first column contains tokens

containing tagged superscript characters. The second column contains replacement tokens with
the superscript characters replaced by unicode superscript characters. This file can be empty if
replacements are not wanted.

• input*.xml are the input TEI XML files.

10/01/13 MorphAdorner Page 67

Running The Link Grammar Parser
LGParser merges the contents of multiple word list files into a single file. A word list file contains a
list of words, one word on each line.

Usage:

lgparser "sentence text to parse"

where "sentence text to parse" is the text of the sentence to parse.

The link grammar parser is a natural language parser based on link grammar theory. Given a sentence,
the system assigns to the sentence a syntactic structure consisting of a set of labeled links connecting
pairs of words. The parser also produces a "constituent" representation of a sentence (showing noun
phrases, verb phrases, etc.).

10/01/13 MorphAdorner Page 68

Sampling Text Files
MorphAdorner provides two utilities for sampling lines from text files: ExactlySampleTextFile and
RandomlySampleTextFile

ExactSampleTextFile usage:

exactlysampletextfile input.txt output.txt samplecount

where

• input.txt -- input text file to be sampled.
• output.txt -- output text file.
• samplecount -- Size of exact random sample to extract. Must be positive integer.

The output file is a text file containing the sampled text lines from the input file. Both the input and the
output must be utf-8 encoded.

RandomlySampleTextFile usage:

randomlysampletextfile input.txt output.txt samplingpercent

where

• input.txt -- input text file to be sampled.
• output.txt -- output text file.
• samplingpercent -- sampling percent from 0 through 100.

The output file is a text file containing the sampled text lines from the input file. Both the input and the
output must be utf-8 encoded.

10/01/13 MorphAdorner Page 69

Stripping Word Attributes
StripWordAttributes creates a derived MorphAdorner XML file with word elements stripped of
attributes.

Usage:

stripwordattributes input.xml output.xml output.tab [/[no]id]
[/[no]trim]

where

input.xml Input MorphAdorned xml file.

output.xml Derived adorned file with word element attributes stripped.

output.tab Tab delimited file of word element attribute values.

/id or /noid
Optional parameter indicating xml:id should be left attached to each word (<w>)
element. Default is /noid which removes the xml:id attribute and value.

/trim or
/notrim

Optional parameter indicating whether whitespace should be trimmed from the start and
end of each XML text line. Default is /notrim, which leaves the original whitespace
intact.

The derived adorned output file output.xml has all attributes stripped from each <w> tag.

The attribute values for each "<w>" element in the input.xml file are extracted and output to the tab-
separated values output.tab file. The order of the attribute lines matches the order of appearance of the
<w> elements in the XML output file. When /id is specified the xml:id value in each <w> element in
output.xml can be matched with the corresponding xml:id value in output.tab .

The first line in output.tab contains the attribute names for each column. Each subsequent line in the
output.tab file contains at least the following information corresponding to a single word "<w>"
element. Some adorned files may add extra word attributes, resulting in more columns.

1. xml:id -- the permanent word ID.
2. eos -- the end of sentence flag (1 if word ends a sentence, 0 otherwise)
3. lem -- the lemma.
4. ord -- the word ordinal within the text (starts at 1)
5. part -- the word part flag. "N" for a word which is not split; "I" for the first part of a split word;

"M" for the middle parts of a split word; and "F" for the final part of a split word.
6. pos -- the part of speech.
7. reg -- the standard spelling.
8. spe -- the corrected original spelling.
9. tok -- The original token.

10/01/13 MorphAdorner Page 70

Training A Part Of Speech Tagger
MorphAdorner requires training data for the part of speech taggers. The training data consists of a utf-8
file containing tab-separated columns. Each input line contains entries corresponding to a single token
(spelling, symbol, or punctuation mark) in the training text.

1. The word ID. (Not needed, but helpful.)
2. The original token (spelling).
3. The NUPOS part of speech.
4. The lemma.
5. The standardized spelling.

For some purposes we generate a derived version of the training data without the first column (the
word ID).

Creating training data

Normally we generate training data as follows.

1. We MorphAdorn a suitable set of XML texts and adorn them using existing training data. The
existing training data is chosen to be consonant in age with the new training texts.

2. The MorphAdorned XML is converted to verticalized tabular form using the XMLToTab utility
(page 77).

3. We import the verticalized text into a database, spreadsheet, or column-aware editor to correct
the initial tagging.

4. We export the corrected verticalized text into a tabular format text file containing the five
columns listed above.

5. We run programs which check for various kind of inconsistencies (obviously mismatched parts
of speech and lemmata, etc.) and produce a corrected tabular file. Part of this process includes
updating the MorphAdorner definitions of the NUPOS parts of speech when new ones appear in
the training data.

6. Rinse and repeat these steps until the training data is free of obvious errors.

Here are some of the checks we typically perform.

• Make sure each input line has entries for each of the fields listed above.

• Convert certain XML entity references to unicode characters. For example, the left double quote
specification "“" is converted to unicode "\u201C".

• Make sure the part of speech tag for each spelling appears in the list of known NUPOS tags.
Unknown tags may be valid but not yet recognized by MorphAdorner.

• Make sure the number of part of speech tags and lemmata matches for each spelling.

• Compile a list of all words marked with the "zz" (unknown) part of speech tag for further
review.

• Look for mismatches between punctuation as a token and the part of speech. A punctuation
mark should have itself as its part of speech tag.

10/01/13 MorphAdorner Page 71

• Look for errors that have appeared in the past, such as apparent possessive words ending in "'s"
that are marked as adjectives, etc.

• Check that both the spelling and the standard spelling are capitalized for proper nouns. A few
proper nouns are legitimately lower case, but they are rare.

• Look for "I" marked with the "z-sy" part of speech. Some of these are legitimate, but some have
been erroneously marked in the past.

• Check a list of previously encountered errors and correct them if found. Example: the the part of
speech tag is "vbzx" and the lemma is "it|be", change the part of speech tag to "pn31|vbzx".

Updating the lemmatizer

The training data provides lemmata for the spellings in the training data. For spellings not in the
training data, the English lemmatizer is used. The English lemmatizer uses a list of rules and a list of
exceptions to lemmatize a spelling given a major word class. New training data may indicate the need
for new rules or exception list entries.

Creating the lexicons

Once the training data is corrected, it is converted to the format required by the MorphAdorner
CreateLexicon utility (page 50).

CreateLexicon creates the word and suffix lexicons from the training data. By convention the word
lexicon file name takes the form {corpusname}lexicon.lex and the associated suffix lexicon takes the
form {corpusname}suffixlexicon.lex .

Normally we want to merge the word lexicon produced from the training data with other word lists
such as common Latin and French words, proper person and place names, and so on. These auxiliary
word lists will not have frequency information, just part of speech information. For these auxiliary
word lists we use the Brill lexicon format, which contains the spelling followed by a list of its possible
parts of speech. The MergeBrillLexicon utility (page 58) merges a word list in Brill format with a
MorphAdorner lexicon.

Brill lexicon entries are added with occurrence frequencies of 1.

The MergeWordLists utility (page 63) is helpful in merging Brill lexicons as well as other types of
word lists.

Generating probability transition matrices

The bigram and trigram part of speech taggers use a Hidden Markov Model approach to tagging, which
requires information about the transition probabilities from one part of speech to another. The
NgramTaggerTrainer utility (page 56) generates the frequency entries required to compute the
transition probabilities.

By convention, the ngram tagger transition matrix data file names take the form
{corpusname}transmat.mat extension.

Spelling maps

MorphAdorner's spelling standardizers use a variety of rules and heuristics to map obsolete or variant

10/01/13 MorphAdorner Page 72

spellings to standard spellings.

An important part of the spelling standardization process is the creation of the spelling map files. These
contain one variant and standard spelling pair per line, separated by a tab character. By convention
spelling maps take file names of the form {corpusname}mergedspellings.tab .

Some variant spellings (e.g., bee, doe) take different standard forms depending upon the word class of
the original spelling. In addition to the main spelling map, a subsidiary map specifies different
standardized spellings for variants depending upon word class.

See page 122 for more information on the spelling map file formats.

10/01/13 MorphAdorner Page 73

Unadorning adorned TEI files
Unadorn removes word level adornments from adorned files. Unadorn replaces <w>, <pc>, and <c>
elements with their text contents.

Usage:

unadorn outputdirectory adorned1.xml adorned2.xml ...

where

• outputdirectory specifies the output directory for the unadorned XML files.
• adorned1.xml adorned2.xml ... specifies the input MorphAdorned XML files from which to

produce unadoned versions.

10/01/13 MorphAdorner Page 74

Updating an Adorned File
UpdateAdornedFile applies a change log to update or downdate an adorned file. The change log is
specified in the format produced by the CompareAdornedFiles (page 40) utility.

Usage:

updateadornedfile operation oldadorned.xml changelog.xml
newadorned.xml

where

• operation -- Update operation, either update to apply updates in changelog.xml to
srcadorned.xml to produce destadorned.xml, or revert to undo updates in changelog.xml to
srcadorned.xml to produce destadorned.xml .

• srcadorned.xml -- Source adorned file.
• changelog.xml -- Records token-based differences between two adorned files.
• destadorned.xml -- Destination adorned file.

10/01/13 MorphAdorner Page 75

Validating XML Files
ValidateXMLFiles validates one or more XML files, optionally against a schema.

Usage:

validatexmlfiles [schemaURI] input1.xml input2.xml ...

where

• schemaURI is an optional URI for a Relax NG or W3C schema against which to validate
subsequent files. The schemaURI is treated as a Relax NG schema if it ends in ".rng", and as a
W3C schema if it ends in ".xsd". The schema is ignored if it ends in anything else.

• input*.xml are the input XML files to validate. At least one file must be specified.

Checks that the specified XML files are valid XML. For XML files referencing a DTD, checks that the
XML is valid in the context of the DTD. For XML files that do not specify a DTD, the XML is
validated against the optional leading Relax NG or W3C schema. If a schema file is not specified, and
the XML document does not specify a DTD, the file will generally be reported as invalid.

Note: ValidateXMLFiles creates a SAX parser for each document (one at a time). This allows even
large adorned files to be validated.

10/01/13 MorphAdorner Page 76

Verticalizing an Adorned Text
XMLToTab converts MorphAdorner XML output to tab-separated tabular form.

Usage:

xmltotab input.xml output.tab

where

• input.xml is the input MorphAdorned XML file.
• output.tab is the output tab-separated values file.

The attribute values for each <w> element in the input XML file are extracted and output to a tab-
separated values text file. An output line contains the following information corresponding to a single
word <w> element.

1. The attribute values for each "<w>" element in the input XML file are extracted and output to a
tab-separated values text file. An output line contains the following information corresponding
to a single word "<w>" element.

1. The work ID.
2. The permanent word ID.
3. The corrected original spelling.
4. The corrected original spelling reversed.
5. The standard spelling.
6. The lemma.
7. The part of speech.
8. An XPath-like path to this word. The leading work ID and trailing word number are removed

from the path.
9. The previous word's original spelling.
10.The next word's original spelling.
11.Up to 80 characters of text preceding the word in the text.
12.Up to 80 characters of text following the word in the text.

This tabular representation of an adorned XML text is useful for data checking purposes. The
morphological attribute values for each word <w> element appear as columns. The 80 characters (or
so) of text on either side of the word allows you to focus on particular part of speech tags and pinpoint
errors from the automatic adornment process. The tab separated values may also be used to construct
spreadsheets or databases of the individual word information.

10/01/13 MorphAdorner Page 77

Part Five: Background Information

Gap Filler
The text of many older works may not be clearly readable because of faded print, ink blotches, foxing,
or other degradations of the printed source. Transcribers mark these unreadable sections in digital text
copies using special characters or tag sequences. In TEI, the <gap> tag serves to mark sections of a
text which cannot be transcribed because of problems in reading the original source.

It may be useful to try to repair individual damaged words by examining which letters appear in the
same positions as unreadable letters across a set of related texts. In essense this is the same as trying to
find the missing letters in words in crossword puzzles. In some cases there is only a single plausible
reconstruction for a damaged word. More often there are several possible reconstructions.

MorphAdorner implements a "gap filler" algorithm which looks at all the words which do not contain
gaps in a given lexicon and tries to find potential matches for a word containing individual letter gaps.
MorphAdorner uses a trie structure to hold all the words without gaps, which supports fast searches for
words contain unknown letters.

You can try MorphAdorner's gap filler online.

Hyphenator
MorphAdorner incorporates methods for hyphenating English words written by David Tolpin. The
algorithms are based upon those originally written for the TeX typesetting system created by Donald E.
Knuth. The rules for hyphenation differ somewhat between American English and British English.
American English breaks words on sound, while British English breaks words on the origin of the
word, then sound. There are also many exceptions.

MorphAdorner uses the British approach as a default since MorphAdorner has been used mostly to
analyze British literature up to now. However, tables are provided which define the American rules as
well.

You can try MorphAdorner's hyphenator online.

10/01/13 MorphAdorner Page 78

http://morphadorner.northwestern.edu/morphadorner/hyphenator/example/
http://morphadorner.northwestern.edu/morphadorner/gapfiller/example/

Language Recognizer
Literary texts are generally composed in one principal language with possible inclusions of short
passages (letters, quotations) from other languages. It is helpful to categorize texts by principal
language and most prominent secondary language, if any. MorphAdorner includes a simple statistical
method based upon character ngrams and rank order statistics to determine the principal language of a
text and list possible secondary languages. The method is described in a paper by William B. Cavnar
and John M. Trenkle entitled N-Gram-Based Text Categorization which appeared in the Proceedings
of SDAIR-94, 3rd Annual Symposium on Document Analysis and Information Retrieval.
MorphAdorner's implementation follows one written by Nakatani Shuyo.

During the Monk project we used this language recognition mechanism to help screen documents that
were nominally English but in fact contained large admixtures of unmarked foreign language text.
Some examples:

• EEBO document A36803 had an English introduction, a lot of Latin, and a lot of English
names. It had a low English score and a non-negligible Latin score. We excluded this from the
Monk corpus of EEBO texts.

• EEBO document A57469 had an English title but was classified as primarily French. It turned
out to be a legal text with a lot of French and Latin. We also excluded this from the Monk
corpus.

• EEBO document A34069 had a low English score (~0.7). It turned out to be an account of a
trading voyage containing a lot of Dutch interaction.

From these and other experiences we determined that the language recognizer test scores offered a
reliable way to identify texts that might contain significant amounts of non-English text in them. The
specific language labels were not quite so reliable. For example, French and Latin -- particularly in
older texts -- were difficult to distinguish, but they were definitely distinguishable from English.
Likewise Scots often appeared as a second choice for English texts. The Scots score was typically
higher for older English texts which contain large amounts of old-fashioned variant spellings. In more
modern texts a high Scots score often pointed to novels containing swaths of Scots dialect.

You can try MorphAdorner's default language extractor online. This extractor recognizes over 70
languages. The longer the text, the more reliable the detection.

10/01/13 MorphAdorner Page 79

http://morphadorner.northwestern.edu/morphadorner/languagerecognizer/example/

English Lemmatizer
Lemmatization is the process of reducing an inflected spelling to its lexical root or lemma form. The
lemma form is the base form or head word form you would find in a dictionary. The combination of the
lemma form with its word class (noun, verb. etc.) is called the lexeme.

In English, the base form for a verb is the simple infinitive. For example, the gerund "striking" and the
past form "struck" are both forms of the lemma "(to) strike". The base form for a noun is the singular
form. For example, the plural "mice" is a form of the lemma "mouse."

Most English spellings can be lemmatized using regular rules of English grammar, as long as the word
class is known. MorphAdorner uses a list of about 150 such rules. Some spellings require special
handling because they don't follow the general rules. These irregular forms include "strong" verbs like
"to catch" and nouns like "mouse." MorphAdorner includes a list of about 1,600 irregular forms.

The lemma form of a spelling depends upon its word class. Thus the noun "bee" has "bee" as a lemma
form, while "bee" as a verb has "(to) be" as a lemma form. This turns out to be a bigger problem in
Early Modern English than in contemporary English because spelling was not reasonably standardized
until the late eighteenth century. Using a standard spelling (page 121) helps in finding the lemma form.
For example, the gerund "strykynge" is an old spelling for "striking." By transforming the old spelling
to a standardized (usually modern) spelling, we can apply the standard lemmatization rules and obtain
"(to) strike" as the lemma. MorphAdorner's English lemmatizer works best with standardized spellings.

Another problem area is the use of the "'s" as a possessive. Sixteenth and seventeenth century English
texts generally did not use the "'s" for the possessive form. Thus a phrase like "his majesty's horses"
might appear as "his majesties horses." Handling this problem requires part of speech tagging in
tandem with spelling standardization.

Not so trivial is the disambiguation of homonyms like 'lie' or 'bark'. There are a few hundred (at most)
such pairs in English. In the future we may be able to distinguish which homonym is meant in some
situations using methods collectively called word sense disambiguation. That would allow more
accurate lemmatization for homonyms.

You can read a more detailed description of the English lemmatization process below.

Stemming

Stemming offers a simpler alternative to lemmatization. Stemming also attempts to reduce a word to a
base form by removing affixes, but the resulting stem is not necessarily a proper lemma. Such stems
can be useful in information retrieval applications.

Two widely used stemmers are included in MorphAdorner.

1. The Porter stemmer, created by Martin Porter.
2. The Lancaster stemmer, created by Chris Paice and Gareth Husk.

You can try MorphAdorner's English lemmatizer online.

10/01/13 MorphAdorner Page 80

http://morphadorner.northwestern.edu/morphadorner/lemmatizer/example/

English Lemmatization Process

Using a lemma from the word lexicon

Given a (spelling, NUPOS part of speech) pair, MorphAdorner first checks if a lemma appears for that
combination in the currently active word lexicon. If so, MorphAdorner returns the lemma specified by
the lexicon

Consider the spelling pair (striking, vvg). MorphAdorner's 19th English lexicon defines the lemma
strike for this combination of spelling and NUPOS part of speech.

Word classes for lemmatization

When the (spelling, part of speech) combination is not found in the current word lexicon,
MorphAdorner uses its general English lemmatizer which is based upon a list of irregular forms and
grammar rules. The lemmatizer is not tied to a specific part of speech set. Instead the lemmatizer
categorizes irregular forms and rules using the following major part of speech classes.

• adjective
• adverb
• compound
• conjunction
• infinitive-to
• noun, plural
• noun, possessive
• preposition
• pronoun
• verb

The NUPOS (or other) part of speech is converted to one of these major word classes for the purposes
of lemmatization. In our example above, the NUPOS gerund tag vvg maps to the verb class. The
lemmatizer then processes the spelling pair (striking, verb) by first checking the list of irregular forms,
and second applying rules of detachment if needed.

Irregular forms

When the spelling pair appears in the irregular forms list, the lemmatizer returns the lemma specified in
that list.

In our example, striking does not appear on the irregular forms list.

On the other hand, the spelling pair (mice,noun) does appear on the irregular forms list, which specifies
that mouse is the lemma form for mice.

Rules of detachment

When the spelling pair does not appear in the irregular forms list, the lemmatizer begins a series of rule
matches for the the major word class. Each rule specifies an affix pattern to match and a replacement
pattern which generates the lemma form. Once a replacement has been effected, the lemmatization
process is complete. These rules are often called rules of detachment because the affixes are detached
from the inflected word form to produce the lemma form.

In the case of striking, the first match occurs against the rule:

10/01/13 MorphAdorner Page 81

CVCing CVCe

which says "match a consonant, followed by a vowel, followed by a consonant, followed by ing at the
end of the word." The replacement string says to keep the consonant followed by the vowel followed
by the consonant, but replace ing with e . The result is that striking is lemmatized to strike.

Some words require the application of multiple sets of detachment rules. For example, the word
"astoundingly" is an adverb formed from a present participle. The lemmatizer first applies the adverb
rules to remove the "ly" producing "astounding", then applies the verb rules to produce "astound" as the
lemma form.

Once a successful substitution occurs, the lemmatization process stops.

Ambiguous endings

The reduced form for some endings is ambiguous. For example, the lemma for the past tense of a verb
ending in "ored" may end in "ore" (e.g., implored -> implore) or in "or" (e.g., colored -> color). To help
disambiguate such cases, a lemmatization rule can specify that the resulting candidate lemma formed
by applying the rule must appear in a known word list. NUPOS uses a large list of standard word forms
taken from the 1911 Webster's Dictionary and other sources.

For example, consider the rule sequence:

+ ored ore
ored or

The first rule says to replace "ored" with "ore" and check that the result is a known word (that's what
the "+" denotes). When the result is not a known word, the rule is bypassed, and the following rule
which replaces "ored" with "or" is used instead.

Examples:

• recolored -> recolore : recolore not in dictionary, go to next rule.
• recolored -> recolor : recolor in dictionary, accept this form as the lemma.

• implored -> implore : implore in dictionary, accept this form as the lemma.

Words containing multiple parts of speech

Words containing more than one part of speech require special handling. MorphAdorner attempts to
split such words at a logical point and assign a separate lemma using the process above to each word
part. For example, the spelling I'm with a compound NUPOS part of speech pns11|vam (the vertical bar
separates the parts of speech), is split into two pairs:

• (I,pns11)
• ('m,vam)

The first pair lemmatizes to i and the second pair to be, giving the compound lemma form i|be.

Certain irregular compound forms such as gimme, a contraction of "give me", appear under the
compound entry in the irregular forms list. The lemma form for gimme is give|i.

Punctuation and Symbols

Punctuation and symbols "lemmatize" to themselves. Foreign words (marked by one of the foreign part
of speech tags) and singular nouns are left untouched by MorphAdorner's lemmatizer -- the original

10/01/13 MorphAdorner Page 82

spelling is considered the lemma form.

Ambiguous lemmata

The lemma form for some words is ambiguous. For example, "axes" is the plural form of both "axe"
and "axis". NUPOS returns one of the possible forms (e.g., "axe" for "axes"). This may not be the
correct form in some cases.

10/01/13 MorphAdorner Page 83

Lexicon Lookup
A MorphAdorner word lexicon for a corpus stores all the spellings for words which appear in the
corpus, along with the lemmata and parts of speech for each spelling. Each lexicon entry also provides
the number of times that spelling appears, both overall as well as broken down by part of speech.
MorphAdorner currently provides two English language lexicons, one for Early Modern English, and
one for Nineteenth Century Fiction.

MorphAdorner augments the lexicons with auxiliary lists of words which do not appear in the corpus.
These include extensive lists of proper names, common foreign words, and combinations of existing
words with parts of speech that do not appear in the corpus. These are assigned an "occurrence" count
of one. These auxiliary lists improve the ability of MorphAdorner to adorn text with parts of speech
and recognize proper names and places.

Lexicon File Format

Lexicon files are plain text files encoded in utf-8 format. Each line in the lexicon file takes the
following form:

spelling countspelling pos1 lemma1 countpos1 pos2 lemma2
countpos2 ...

where

• spelling is the spelling for a word,
• countspelling is the number of times the spelling appears in the training data,
• pos1 is the tag corresponding to the most commonly occurring part of speech for this spelling,
• lemma1 is the lemma form for this spelling, <>li>countpos1 is the number of times the pos1 tag

appeared, and
• pos2, countpos2, etc. are the other possible parts of speech and their counts and lemmata.

These fields are separated by tab characters.

The raw counts are stored rather than probabilities so that new training data can be used to update the
lexicon easily, and so that individual part of speech taggers can apply different methods of count
smoothing.

Following are a few lines from the nineteenth century fiction lexicon.

die 1660 vvi die 1164 n1 die 22 vvb die 474
die-away 2 j die-away 2
died 803 vvd die 607 vvn die 196

The spelling died appears 803 times in the training data. It appears 607 times as the part of speech vvn
and 196 times as the part of speech vvn. Its lemma in both cases is die.

When lemmata are not available, an "*' appears in the lemma field. Suffix lexicons contain "*" for all
lemmata.

You can try looking up spellings in MorphAdorner's Lexicon lookup online.

10/01/13 MorphAdorner Page 84

http://morphadorner.northwestern.edu/morphadorner/lexiconlookup/example/

10/01/13 MorphAdorner Page 85

MorphAdorner XML Output
MorphAdorner can add word-level morphological adornments to XML texts encoded in two common
formats, the Text Encoding Initiative (TEI) format or the Text Creation Partnership (TCP) format.
Other XML formats can be accommodated using customized input methods.

MorphAdorner adds XML tags to mark words, punctuation, and whitespace. All other XML tags which
appear in the input file are passed through to the output unchanged except for minor reformatting.

TEI-Analytics

For the Monk project (2007-2009), all input texts were mapped to a common subset of TEI called TEI-
Analytics, using the Abbott framework developed by Brian Pytlik Zillig and Steve Ramsey at the
University of Nebraska. TEI-Analytics was jointly developed by Martin Mueller at Northwestern
University and Brian Pytlik Zillig and Steve Ramsey at the University of Nebraska. TEI-Analytics is
the default XML input format assumed by MorphAdorner. TEI-Analytics is a minor modification of the
P5 TEI-Lite schema, with additional elements from the Linguistic Segment Categories to support
morphosyntactic annotation and lemmatization.

TEI-Analytics has been revised over the past few years and is now, except for the word-level
adornments, a proper subset of TEI P5.

XML Tag types: Hard, Soft, and Jump Tags

In order to adorn an XML formatted text properly, MorphAdorner determines the reading context of
each word in the input text by constructing the reading sequence for the text. The reading context for a
word depends upon the type of XML tag in which it appears as well as the text of its neighboring
words.

A hard tag is an SGML, HTML, or XML tag which starts a new text segment but does not interrupt the
reading sequence of a text. Examples of hard tags include <div> and <p>.

A jump tag is an SGML, HTML, or XML tag which interrupts the reading sequence of a text and starts
a new text segment. An example of a jump tag is <note>. Jump tags initiate a new reading context. The
previous reading sequence continues after the end of the jump tag.

A soft tag is an SGML, HTML, or XML tag which does not interrupt the reading sequence of a text and
does not start a new text segment. Some soft tags provide textual decoration such as <hi> and .
Others indicate textual milestones such as <milestone> or formatting such as <lb>. Still others mark
higher level text segments such as <rs>.

The <w>, <pc> and <c> tags

MorphAdorner uses the <w> tag to enclose the text of a word or symbol, the <pc> tag to enclose
punctuation marks, and the <c> tag to enclose whitespace.

MorphAdorner v1 used <w> for both words and punctuation as the <pc> element was not officially adopted
at the time MorphAdorner was originally developed.

The text enclosed by the <w></w> tags is the original token text, which may be a complete word
token, or a token fragment when the token text is split by soft or jump tags. Split words are discussed
below.

10/01/13 MorphAdorner Page 86

MorphAdorner normalizes the whitespace in input documents, mapping all multiple blanks, tabs, and
end of line characters to single blanks. The normalized whitespace is output using the <c> tag. Each
<c> </c> tag pair encloses a single whitespace character.

To prevent output lines from becoming too long, MorphAdorner emits each <w></w> tag and each
<c></c> tag on a separate output line. Most other XML tags are also indented and emitted on separate
lines. This "pretty-printing" implies that programs which process the MorphAdorner output should
ignore end of line characters and use the contents of the <c></c> tags to perform basic text spacing.

One of the early decisions we made in the Monk project was that the adorned XML files should be more-or-
less human readable, although in practice no human being outside of programmers would probably spend
much time looking at the texts. That means that each line of output should fit, as much as possible, in the
width of a typical computer screen. "Pretty-printing" the XML in this way, with indentation to show structure,
introduces a great deal of extra whitespace. It is unreasonable to expect each and every program and
programmer to determine what whitespace is part of the "pretty-printing" and what is part of the text. That is
why we mark the textual whitespace using <c> to make it unambiguous. Whitespace which is not enclosed in
<c> tags can be ignored for purposes of textual analysis or display.

<w> tag attributes

MorphAdorner defines the following attribute fields for each <w> tag.

xml:id Provides a unique id for the token or token fragment. This should be treated as an opaque
value. See the section on word IDs below.

ord Specifies the ordinal of the token, beginning at 1 for the first token. The ordinal is
consecutive across all XML tags. MorphAdorner assigns the same ordinal value to all parts of
a token split by soft tags since these token fragments appear consecutively in the input file.
Tokens split by jump tags may receive different ordinal values for non-consecutive
fragments. Emitted by default in MorphAdorner v1; optional and not emitted by default in
MorphAdorner v2.

eos A value of "1" indicates this token ends a sentence. A value of "0" indicates this token does
not end a sentence. The eos value is most accurately set for ordinary text. Tokens within cells
or other abbreviated entries may not be marked correctly. See below for an explanation of
why we mark end of sentences this way. Used in MorphAdorner v1 by default. A value of "1"
indicates this token ends a sentence. A value of "0" indicates this token does not end a
sentence. The eos value is most accurately set for ordinary text. Tokens within cells or other
abbreviated entries may not be marked correctly. The eos was used by default in
MorphAdorner v1, and remains an option in MorphAdorner v2. MorphAdorner v2 marks the
end of a sentence by adding an unit="sentence" attribute to the last token in a sentence,
specified either by a <w> or <pc>. In some cases an empty <pc unit="sentence"/> is used to
mark the end of a sentence. Use of the unit="sentence" attribute value is more in line with
TEI P5.

lem Provides the lemma head word form(s) of the token. For punctuation and symbols this is the
same as the spelling. For words, this is the base form or head word (uninflected) form you
would find in a dictionary. When a word contains more than one lemma, a vertical bar
separates the lemma forms.

n Provides a location ID based upon a page image identifier and column within page. Optional;

10/01/13 MorphAdorner Page 87

mostly used when adorning Text Creation Partnership after conversion from SGML to TEI
XML format to maintain the tie between the original digitized page images and the text
transcription.

part Indicates which part of a split token this token text provides.

• A value of "N" means the token text is unsplit.
• A value of "I" means the token text is the first part of a split token.
• A value of "M" means the token text is some part after the first but before the last.
• A value of "F" means the token text is the last part of a split token.

pos The part of speech for the token. By default, MorphAdorner uses the NUPOS part of speech
tag set. For symbols and punctuation the part of speech is the same as the token. For words
containing more than one part of speech (e.g., contractions), a vertical bar separates the part
of speech tags.

reg A standardized, usually modern, version of the spelling. For obsolete words no longer in use,
a representative standard form is chosen which is usually the Oxford English Dictionary
headword form.

sn The sentence number, starting at 1 and running through the text. Cognizant of sentences split
by jump tags. Optional, and not used in the Monk project.

spe The spelling. This value combines the fragments of a split word into the complete spelling. In
most cases the spe value will match the tok value. However, some corpora use special
metacharacters in the tokens which are not intended to be part of a word. For example, the
TCP/EEBO texts use characters such as the "+" and "|" to mark various kinds of word breaks.
The tok attribute value retains those metacharacters for archival completeness, but the spe
value removes them.

tok The original token text. Includes all metacharacters in the original text. The tok value may be
a fragment of the complete token when the token text is split by soft or jump tags.

wn The word number within a sentence, starting at 1. Cognizant of sentences split by jump tags.
Optional, and not used in the Monk project.

Word IDs

MorphAdorner assigns a unique word ID to each word token in an adorned file using the xml:id=
attribute. The principal role of word IDs is to provide a way for different programs to refer to the same
words in adorned files. Without word IDs any individual program can still generate its own IDs if
needed. However these IDs will differ in each program, rendering it difficult to determine when
programs are referring to the same word.

The only property required of a word ID is that it be unique for each word.

MorphAdorner generates unique word IDs that start with the work identifier, taken from the file name
of the work, followed by a hyphen, followed by another value which is unique within the work.
MorphAdorner can generate two types of values for the within the work part of the ID: either a
"reading context order" (the default) or "word within page block".

10/01/13 MorphAdorner Page 88

http://morphadorner.northwestern.edu/morphadorner/documentation/nupos/

The "reading context order" appends integer values reflecting the reading context order defined by the
classification of hard, soft, and jump tags. This is the default type.

The "word within page block" appends two integer values in the the form pageblocknumber-
wordinblock, where pageblocknumber is the ordinal of the current <pb> (page break) entry, and
wordinblock is the number of the word within the page block (starting at 1 * spacing). When the text
contains no page break elements, all words appear as part of block 0.

The spacing value provides the increment from one ID value to the next. 10 is the default spacing.
Setting the spacing to a value of 10 or 20 (or larger) allows editing programs to interpolate corrections
between existing words when the tokenization needs correction. This allows the word IDs to be more
stable while the editing process continues. When the spacing is set to 1, adding or removing a word
requires a complete resequencing in the case of reading context order IDs or a resequencing of an entire
block in the case of word within page block IDs. The resequencing process is not something a human
being will do, but is the province of a program such as an editing program, since not only the word IDs
but the word ordinals, sentence numbers, and word numbers with sentences will require updating.

The advantage of the "reading context order" type is that a program can extract just the word elements
to get the relative position of words and sentences. By sorting words by the word ID it is simple to
extract sentences and n-grams without having to worry about hard, jump, and soft tags. The
disadvantage is that any change in the tag structure or the classification of tags invalidates the reading
context order property (but the word IDs are still valid as unique values).

The advantage of the "word within page block" type is that it provides a basis for displaying a citation
position for words. Of course any individual program can generate citations without reference to word
IDs, but it may be helpful to have a consistent basis for generating citations. The disadvantage is that
each individual program must fully parse the XML and understand the soft, hard, and jump tag
structure in order to determine the reading context order so that sentences and n-grams can be
extracted.

Numerous tokenization errors remain in many digitized texts. Some errors come from the original
digitization. Others come from mistakes introduced by MorphAdorner. Once these tokenization errors
have been corrected, the word IDs can be resequenced and citations can be stabilized.

Location IDs

In addition to its xml:id MorphAdorner can generate a location ID as the 'n' attribute of <w> and <pc>
elements. The purpose of this location ID is to facilitate alignment of the transcribed text with the page
image, a key requirement for many forms of work with retro-digitized documents. The location ID is
based on the page number of the digital scan, typically a double page. For examplem, it is referenced in
the Text Creation Partnership SGML source texts as the value of the REF attribute in <PB> elements
and appears as the value of the 'facs' attribute in the P5 version. Page numbers of the printed source
appear in the PB elements as the value of N attributes, but not all printed pages have running page
numbers. The location ID uses 'a' and 'b' to distinguish the parts of a double-paged scan.

More precisely, the location ID takes the form facs-column-wordinpage where facs comes from the
attributes of the enclosing <pb> element, column is a letter starting with "a" and giving the column
number on the printer page, and wordinpage is the ordinal of the word within the page starting at 1
multiplied by the spacing. Subsequent location ID values have a wordinpage value incremented by the
given spacing value, which is 10 by default. Optionally the work ID (usually the base file name) can be
prepended to the location ID.

10/01/13 MorphAdorner Page 89

Here is a typical example of a location ID.

• 2-a-0050

This refers to the first column, fifth word in page image 2 for the current work.

These can be long identifiers, but theoretically only the page-base counter needs to be recorded as an 'n'
attribute. If page-based IDs are needed, they can be constructed on the fly or in a preprocessing step by
concatenating the work ID, the attribute values of the <pb> element and the page counter. It may also
be practical to construct an xml:id for each page by concatenating the workid with attribute values, as
in <pb xml:id="A05137-025-051" facs="25" n="51" />

Marking the end of a sentence

MorphAdorner v1 used the eos= attribute on the <w> tag to mark a token which ends a sentence. We
considered using <milestone> tags to mark sentence, but these presented many problems when
sentences span jump tags. The same was true of seg-like markers such as <s>.

MorphAdorner v2 uses the unit= attribute with a value of "sentence" to mark the end of a sentence.
This aligns with standard TEI P5 usage.

Using a word-level value -- either the eos attribute or the unit= attribute -- to mark the end of a
sentence makes it easy to generate sentence information regardless of how one orders the text when
dealing with jump tags. For example, Prior (part of Monk) and and WordHoard move jump tag content
to the end of the work part. That enormously simplifies text display and operations such as collocate
extraction. MorphAdorner, when requested to extract sentences, tries to leave the sentences in jump
tags as close to their original location in the text. The same word-level flag supports either approach (or
other approaches).

Using sn= to add sentence numbers is another approach.

Abbreviated attribute output

By default MorphAdorner outputs the full set of <w> attributes. MorphAdorner can also output an
abbreviated attribute set, in which only non-redundant attribute values appear in the <w> tag. This
produces smaller output files with no loss of information, since the omitted attribute field values can be
restored from those of the other attributes or the token text.

MorphAdorner uses the following algorithm to generate the abbreviated set of <w> tag attributes.

1. Let the token-text be the text enclosed within the <w></w> tag pair.
2. When tok has the same value as the token-text, omit the tok attribute.
3. When spe has the same value as tok, omit the spe attribute.
4. When reg has the same value as spe, omit the reg attribute.
5. When pos has the same value as tok, omit the pos attribute.
6. When lem has the same value as spe, omit the lem attribute.
7. When eos has the value "0", omit the eos attribute.
8. When part has the value "N", omit the part attribute.

The following algorithm can be used to reconstruct the full set of <w> attributes from the abbreviated
set.

1. When tok is missing, set its value to the text enclosed by the <w></w> tags.

10/01/13 MorphAdorner Page 90

http://wordhoard.northwestern.edu/

2. When spe is missing, set its value to the value of tok.
3. When reg is missing, set its value to the value of spe.
4. When pos is missing, set its value to the value of tok.
5. When lem is missing, set its value to the value of spe.
6. When eos is missing, set its value to "0" (zero).
7. When part is missing, set its value to "N".

The attribute values for xml:id and ord are always present in either abbreviated or verbose output files.

Split tokens

Individual tokens in XML texts may be split by soft tags, and occasionally by jump tags.
MorphAdorner assembles the fragments of a split token into a complete token and sets the tok and spe
attributes of the <w> tag for the token fragment to contain the complete token.

The xml:id field for a split word adds "dot partnumber" to the end of the <w> tag's xml:id value. The
xml:id can still be treated as an opaque object, but the part number can be extracted from the end if
desired. In many cases the part number is not needed, and the value of the part attribute of the <w> tag
suffices.

• part="N" means the token is unsplit (complete).
• part="I" means the token is the first part of a split token.
• part="M" means the token is some part after the first but before the last.
• part="F" means the token is the last part of a split token.

Here is an example of a split word from Austen's Lady Susan (ancf0207.xml). The original XML text
is:

<p rend="align(r)">Edward S<hi rend="sup(1)">t</hi>.</p>

The "St." token is split into three pieces by soft tags. The corresponding adorned text is:

<p rend="align(r)">
 <w eos="0" lem="Edward" pos="np1" reg="Edward"
 spe="Edward" tok="Edward" xml:id="ancf0207-050740" part="N">Edward</w>
 <c> </c>
 <w eos="1" lem="saint" pos="n1" reg="St." spe="St." tok="St."
 xml:id="ancf0207-050750.1" part="I">S</w>
 <hi rend="sup(1)">
 <w eos="1" lem="saint" pos="n1" reg="St." spe="St." tok="St."
 xml:id="ancf0207-050750.2" part="M">t</w>
 </hi>
 <w eos="1" lem="saint" pos="n1" reg="St." spe="St." tok="St."
 xml:id="ancf0207-050750.3" part="F">.</w>
</p>

When an ord attribute appears, its value is the same for all three fragments of "St." . This is also the
case for words split solely by soft tags. The ord attribute values will not be the same for words split by
jump tags, as the individual word fragments can be separated by hundreds or even thousands of other
words.

Simplified TEI P5-like output

MorphAdorner v2 provides the AdornedToSimpleTEIP5 (page 45) utility which converts the non-

10/01/13 MorphAdorner Page 91

standard word attribute values of adorned files to a simpler and more nearly standard TEI P5 format.

The simplified format emits the lemmata, the parts of speech, and the standard spelling for each token.
The attribute names have changed to be compatible with TEI P5: lem is changed to lemma, pos is
mapped to ana and a "#" prepended to the part of speech. The non-standard reg attribute can be
retained or changed to a standard TEI P5 choice structure. The corrected spelling (spe), original token
(tok), and word ordinal (ord), if any, are removed.

Here is a sample snippet showing the new adorned file format.

<w lemma="in" ana="#p-acp" reg="in" xml:id="A88624-000740">in</w>
<c> </c>
<w lemma="love" ana="#n1" reg="love" xml:id="A88624-000750">love</w>
<c> </c>
<w lemma="with" ana="#p-acp" reg="with" xml:id="A88624-000760">with</w>
<c> </c>
<w lemma="Ismenia" ana="#np1" reg="Ismenia" xml:id="A88624-000770">Ismenia</w>
<pc unit="sentence" xml:id="A88624-000780">.</pc>

Named Entities

MorphAdorner contains an experimental procedure which extends the Gate facility for adding named
entity tags to input texts. Each named entity is enclosed by <rs type="named entity type" ></rs> tags.
The type= attribute value specifies the type of the named entity, which may be one of the following.

type="date" A date reference (e.g., March 12).

type="location" A geographical location (e.g., England).

type="money" An amount of money (e.g., 1 shilling).

type="organization" An organization name (e.g., Bank of England)

type="person" A person's name (e.g., Emma Woodhouse)

type="time" A time reference (e.g., 12 midnight)

type="literary" A literary reference (e.g., Ivanhoe)

10/01/13 MorphAdorner Page 92

Name Recognition
Literary texts are filled with names of people and places. MorphAdorner includes a simple name
recognizer for extracting names to allow building lists of characters and geographical settings.
MorphAdorner uses a simple noun phrase pattern recognition method to locate probable names in a
text. This is not a highly accurate procedure but it provides a useful baseline for further refinement.

MorphAdorner's name extraction process is as follows.

1. Assign parts of speech to each word in the text.
2. Locate noun phrases, e.g., the longest series of nouns bracketed by non-nouns.
3. Assume noun phrases containing at least one proper noun are names.

Distinguishing a personal name from a location isn't so simple. MorphAdorner uses lists of proper
names and place names, but there is considerable overlap between these in English. Even a human
reader might have trouble determining in some cases whether a name refers to a place or a person. In
the sentence "Chester provided arms for the mercenaries", does this refer to the Earl, the county, or
another person named Chester? Even in context it might be impossible to be sure which is the referent.

You can try MorphAdorner's default name extractor online which uses the simple noun phrase method
described above.

10/01/13 MorphAdorner Page 93

http://morphadorner.northwestern.edu/morphadorner/namerecognizer/example/

NUPOS and Morphology
This section details Martin Mueller's "NUPOS" part of speech tagset and makes explicit the structure of
the tagset and other related morphology objects such as "spellings", "word classes", "lemmata", and
"word parts".

As a convention, in this discussion, when we use the term "word", it means "a specific single
occurrence of a word somewhere in a text." For the concept of a "word in general", we will use the
terms "headword" and "lemma", which we'll define and discuss in detail later.

The full version of NUPOS can handle both Greek and English texts and part of speech tagging. Here
we only describe the subset of NUPOS that deals with English. For more information, see Martin
Mueller's fuller description at http://panini.northwestern.edu/mmueller/nupos.pdf .

Spellings

The first and most basic attribute of a word is its spelling. This may seem to be a simple concept, but
especially for earlier texts from periods before spelling became regularized, it is useful to distinguish
among several different meanings of the term "spelling". In NUPOS there are three different
"spellings" for each word:

1. The "token spelling". This is the spelling of the word exactly as it appears in the original digital
source for the text, including all capitalization and any typographical conventions that might be used in
the source as markup for various purposes. For example, the original source for a text might contain a
word token "common|lie", where the encoders used the vertical bar character "|" to mark up a soft
hyphen at the end of a line. As another example, in some early printed texts, a "y" with a superscript "t"
was used to represent the word "that". Such a word might be marked up as "y^t" in the source for such
a text. As a final example, the token "@abper;fecit" might appear in the source for an early text. In this
example "&abper;" is a symbol used in early typesetting as an abbreviation for "per" or "par".

The token spelling retains as much fidelity as possible with the original digital source. It will often
contain various kinds of non-uniform markup, as used by the organizations that digitally encoded the
texts. It may be of interest to some researchers, but most people will be more interested in the other two
kinds of spellings.

The token spelling may be of importance in contexts where an application wishes to reproduce as much
visual fidelity as possible with original printed texts when displaying the text to users.

2. The "standard original spelling". This is a version of the spelling with the typographical conventions
normalized, and in most contexts is probably what one thinks of when one uses the general term "the
spelling of the word". It is usually identical with the token spelling, but not always. In the examples
above, the three tokens become the following "standard original spellings":

common|lie --> commonlie
y^t --> that
@abper;fecit --> perfecit

3. The "standard modern spelling". This is the standard modern orthographic form of the original
spelling. But the morphological form is not modernized. Thus a spelling like "lovyth" is regularized to
"loveth". "loveth" is not, however, regularized to "loves", but is rather recognized as a standard archaic
form. In the three examples above, the standard modern spellings are as follows:

10/01/13 MorphAdorner Page 94

http://panini.northwestern.edu/mmueller/nupos.pdf

common|lie --> commonlie --> commonly
y^t --> that --> that
@abper;fecit --> perfecit --> perfecit

Note that "perfecit" is a Latin word, and at no point is there an attempt made to translate foreign words
into English.

For modern texts, the three spellings are nearly always identical. The main exceptions will be for words
in XML texts split by decorator (soft) tags.

Word Parts

Words have spellings, as outlined above. We also want to enumerate and discuss in detail their other
tagging attributes, such as word class, part of speech, and lemma. Before we can do this, however, we
need to discuss a pesky complexity of texts - contractions.

Consider as an example the first word of Hamlet, "Who's". This is a single lexical word, and in this
example all three spellings of the word are the same string "Who's".

In terms of the other attributes, however, this word is properly considered to be a lexical representation
of the two separate words "who" and "is". Each part has its own word class, part of speech and lemma.
In this particular example, it might also be possible to think of each part as having its own spelling or
"sub-spelling", "who" and "'s", but in the general case it might be difficult to reasonably split up a
spelling into its pieces, and the current version of NUPOS does not attempt to do this.

In NUPOS, this word "who's" is tagged as follows:

word part
major word
class

word class
part of
speech

lemma

1 wh-word crq q-crq who (crq)

2 verb va vbz be (va)

While we might wish that this complexity didn't exist or could be safely ignored, it can be important
when analyzing texts. For example, consider the set of all words in Shakespeare which are instances of
the auxiliary verb "be". In NUPOS, the first word of Hamlet is correctly included as a member of this
set. It is also a member of the set of all words in Shakespeare which are instances of the wh-word
"who".

As another example, consider the general notion of counting different kinds of words in Shakespeare.
In NUPOS, the count of the total number of occurrences of the auxiliary verb "be" includes the first
word of Hamlet, as it should, as does the count of the total number of occurrences of the wh-word
"who". The first word of Hamlet is counted twice, once as "be" and once as "who". Consequently, the
sum of the counts of the number of different kinds of words in Hamlet is equal to the number of word
parts in Hamlet, not the number of words.

As a final example, consider an analysis of bigrams in Shakespeare. In NUPOS, the first word of
Hamlet is considered to be an instance of the bigram "the lemma who (crq) followed by the lemma be
(va)", as well as an instance of the bigram "word class crq followed by part of speech vaz".

In the general case, each word, while it usually only has one part, might have more than one part -- two

10/01/13 MorphAdorner Page 95

parts in the case of most contractions, but at least conceivably perhaps even more than two parts. While
it is words which possess spelling attributes, it is their parts which possess the other morphological
attributes, and this is an important distinction to keep in mind.

In the normal case, when a word has only one part, we often use the simple term "word" to refer to its
unique part. For example, we say "this word is a verb", when to be precise what we are really saying is
"the one and only part of this word is a verb."

Word Classes

In NUPOS, each word part has a "major word class" and a "word class". These concepts provide the
coarsest ways to categorize words.

There are 17 major word classes, which should be self-explanatory:

Major word classes

adjective
adv/conj/pcl/prep
adverb
conjunction
determiner
foreign word
interjection
negative
noun
numeral
preposition
pronoun
punctuation
symbol
undetermined
verb
wh-word

Major word classes are subdivided into a slightly finer categorization by "word class". There are 34
word classes in NUPOS:

Name Description Major Class

acp adverb/conjunction/particle/preposition adv/conj/pcl/prep

an adverb/noun noun

av adverb adverb

cc coordinating conjunction conjunction

crq wh-word wh-word

cs subordinating conjunction conjunction

10/01/13 MorphAdorner Page 96

d determiner determiner

dt article determiner

fo foreign foreign word

fr French foreign word

ge German foreign word

gr Greek foreign word

it Italian foreign word

j adjective adjective

jn adjective/noun adjective

jp proper adjective adjective

la Latin foreign word

n noun noun

np proper noun noun

nu numeral numeral

pf preposition "of" preposition

pi indefinite pronoun pronoun

pn personal pronoun pronoun

po possessive pronoun pronoun

pp preposition preposition

pu punctuation punctuation

px reflexive pronoun pronoun

sy symbol symbol

uh interjection interjection

v verb verb

va auxiliary verb verb

vm modal verb verb

xx negative negative

zz undetermined undetermined

Each word class has a very short string which provides a name for the word class, and each word class
belongs to one and only one of the major word classes.

For example, for the major word class "verb", there are three word classes "va" (auxiliary verb), "vm"
(modal verb), and "v" (verb). So in NUPOS, there are three kinds of verbs.

10/01/13 MorphAdorner Page 97

Parts of Speech

NUPOS has a fine-grained part of speech tagset, much finer-grained than the word classes and major
word classes. There are 241 total English parts of speech in the current version of NUPOS (not
counting punctuation).

Each part of speech belongs to one and only one word class, so the part of speech tagset in NUPOS
represents a subdivision of the word class tagset, in the same way that the word class tagset represents a
subdivision of the major word class tagset.

To continue the example of verbs, in NUPOS each of the verb word classes contains a number of parts
of speech:

word class va (auxiliary verb): 19 parts of speech
word class vm (modal verb): 14 parts of speech
word class v (verb): 27 parts of speech

Each part of speech, in addition to belonging to a word class, is also characterized by, and largely
defined by, how it is used in various grammatical categories. These categories and their possible values
should be mostly self-explanatory to those familiar with English grammar.

Syntax (used as): See below.
Tense: pres, past or empty (not applicable)
Mood: ppl, inf, impt or empty (not applicable)
Case: gen, obj, subj, or empty (not applicable)
Person: 1st, 2nd, 3rd, or empty (not applicable)
Number: sg, pl, or empty (not applicable).
Degree: comp, sup, or empty (not applicable).
Negative: no, nor, not, or empty (not applicable).

As an example, the NUPOS part of speech "vmd2" is used for modal verbs used in the second person
singular past tense. It has the following attributes in addition to its name "vmd2":

word class = vm (modal verb)
syntax = vm
tense = past
mood = empty
case = empty
person = 2nd
number = sg
degree = empty
negative = empty

An example of this part of speech occurs in Act 5, Scene 1 of Hamlet, where Gertrude says "I hoped
thou shouldst have been my Hamlet's wife;" In this passage, the word "shouldst" is tagged with the
lemma "shall (vm)" and the part of speech "vmd2". By virtue of this tagging, we know all of the
following facts about this word:

It is an instance of the headword "shall"
It is a verb.
It is a modal verb.
It has NUPOS part of speech "vmd2".
It is in the past tense.
It is in the second person.
It is singular.

10/01/13 MorphAdorner Page 98

In a full implementation of NUPOS, any of these attributes can be used as a criterion for searching,
grouping, sorting, counting, and analysis. For example, a researcher might compare the use of past
tense modal verbs by one author to their use by another author, or he might do a search where he finds
all uses of second person singular verbs in the works of Chaucer. Or he might find all of the verbs used
in Spenser and generate a report which counts up how many times each of them are used in the various
possible combinations of person and number.

The "syntax" attribute is used to specify how the part of speech is used. For example, the part of speech
"av-j" is used for adjectives that are used as adverbs. The "syntax" attribute of this part of speech is
"av". An example of this part of speech occurs in Act 1, Scene 1 of Hamlet, where Bernardo says
"Long live the king!" The word "Long" in this passage in used as an adverb modifying the verb "live"
and has the NUPOS part of speech "av-j". Contrast this with the word "long" in Act 3, Scene 1, where
Hamlet says "That makes calamity of so long life;". In this passage, the word "long" is tagged with the
part of speech "j", the part of speech for "normal" uses of adjectives. Both of the parts of speech "av-j"
and "j" have the word class "j" and major word class "adjective", but "av-j" has the syntax attribute
"av", while "j" has the syntax attribute "j".

Martin has also mentioned the possibility of more coarse-grained versions of NUPOS, finer grained
than word classes but coarser than the full set of 238 parts of speech. These intermediate levels of
NUPOS may be useful for data mining and other kinds of analysis. We have not yet worked out the
details of this idea.

Another distinctive feature of NUPOS is that it offers some ambiguous wordclasses, like 'jn' for words
that hover between noun and adjective or 'an' for words that hover between noun and adverb (home,
tomorrow).

All of the NUPOS parts of speech are displayed at the end of this appendix.

Lemmata

A lemma is a dictionary "headword" plus its word class.

For example, consider the verb "love" in Shakespeare. This lemma has the headword "love" and the
word class "v". He uses this common lemma in 41 of his 42 works, a total of 1,135 times, in a variety
of contexts with quite a few different parts of speech and spellings. For example, he uses it a total of
153 times with the part of speech "vvz", which is the NUPOS part of speech tag for verbs used in the
third person singular in the present tense. 150 of these uses are spelled "loves", and three of them are
spelled "loveth".

There is, of course, also a noun named "love". In NUPOS, there are two separate lemmata for the
headword "love", one for the noun and one for the verb. In general, headwords like "love" are used to
form NUPOS lemmata based on their word class, and the word class is listed along with the headword
when naming the lemma. In our example, the NUPOS names for the two "love" lemmata are "love (n)"
and "love (v)".

The set of all lemmata used in a work or collection of works is called the "lexicon" for the work or
collection.

MorphAdorner

MorphAdorner reads source XML texts, locates sentence and word boundaries, and marks each word
with five morphological tags -- the three spellings, the NUPOS part of speech, and the lemma

10/01/13 MorphAdorner Page 99

headword. For contractions, MorphAdorner emits multiple parts of speech and headwords.

It's important to recall that MorphAdorner is more than just a part of speech tagger. It's also a spelling
normalizer and a lemma tagger.

This tagging data emitted by MorphAdorner is sufficient to recover all of the information mentioned
above for each word and word part, including the major word class, word class, part of speech category
values, and lemma (headword plus major word class). Note that MorphAdorner only emits the lemma
headword. The word class may be deduced from the part of speech.

Following the approach to contracted forms taken by NUPOS, Morphadorner treats contracted forms as
a single token for two reasons.

1. The orthographic practice reflects an underlying linguistic reality that the tokenization should
respect.

2. In Early Modern English (as in Shaw's orthographic reforms) contracted forms appear without
apostrophes, as in 'noot' for 'knows not' or 'niltow' for 'wilt thou not'. It's not obvious how to
split these forms. The situation is even less clear for dialectical forms.

Contracted forms get two part of speech tags separated by a vertical bar, but with regard to forms like
"don't', "cannot", "ain't", MorphAdorner analyzes the forms as the negative form of a verb and does not
treat the form as a contraction. It uses the symbol 'x' to mark a negative part of speech tag.

Summary

NUPOS comprises the following objects, attributes, and relationships:

• Each word has three spellings: the token, standard original, and standard modern spellings.
• Each word has an ordered list of word parts, usually only one except for contractions.
• Each word part has a part of speech and a lemma.
• Each part of speech has a name, a word class, and values for the grammatical categories of

syntax, tense, mood, case, person, number, degree, and negative.
• Each lemma has a name, a headword and a word class. The name of each lemma is formed from

its headword and the name of its word class.
• Each word class has a name and a major word class.
• Each major word class has a name.
• In a full implementation of NUPOS, all of these objects and their attributes can be used as

criteria for searching, grouping, sorting, counting, and analysis.

The following diagram is useful as a way of summarizing NUPOS. It's not a formal UML diagram, and
the drawing has no particular implementation implications, other than as a way of summarizing some
of the functionality that any particular full implementation of NUPOS must support. It's just an
informal way of making a picture out of the objects, attributes, and relationships enumerated above and
described and defined in detail in this note. The double-headed arrow is used to indicate the
relationship "may have more than one of", while the single-headed arrow indicates "has one and only
one of". The term "list of" in the one-to-many relationship between words and their parts indicates that
the parts of a word are ordered -- there's a first one, then a second one, and so on. This is important for
dealing with n-grams.

10/01/13 MorphAdorner Page 100

NUPOS for English

The following table lists all the non-punctuation parts of speech defined by NUPOS. The first column
provides the NUPOS part of speech tag. The second column describes the tag. The third column offers
an example the part of speech. The fourth column provides the count of occurrences of the tag in the
NUPOS training data expressed as parts per million. That shows how commonly a tag occurs in the
MorphAdorner training data. The training data consists of about six million words drawn from the
following texts:

• The following table lists all the non-punctuation parts of speech defined by NUPOS. The first
column provides the NUPOS part of speech tag. The second column describes the tag. The third
column offers an example the part of speech. The fourth column provides a rounded count of
occurrences of the tag in the NUPOS training data expressed as parts per million. That shows
how commonly a tag occurs in the MorphAdorner training data. The training data consists of
about six million words drawn from the following texts:

• The complete works of Chaucer and Shakespeare
• Spenser's Faerie Queene
• North's translation of Plutarch's Lives
• Mary Wroth's Urania
• Jane Austen's Emma
• Dickens' Bleak House and The Old Curiosity Shop
• Emily Bronte's Wuthering Heights
• Thackeray's Vanity Fair
• Mrs. Gaskell's Mary Barton
• Frances Trollope's Michael Armstrong

10/01/13 MorphAdorner Page 101

• George Eliot's Adam Bede
• Scott's Waverley
• Harriet Beecher Stowe's Uncle Tom's Cabin
• Melville's Moby Dick

Examples are chosen for the most part from the training data.

Tag Explanation Example
Occurences per

million words

a-acp acp word as adverb I have not seen him since 9,500

av adverb soon 37,500

av-an noun-adverb as adverb go home 750

av-c comparative adverb sooner, rather 500

avc-jn comparative adj/noun as adverb deeper 8

av-d determiner/adverb as adverb more slowly 2,000

av-dc
comparative determiner/adverb as
adverb

can lesser hide his love 1,900

av-ds superlative determiner as adverb most often 900

av-dx negative determiner as adverb no more 600

av-j adjective as adverb quickly 15,500

av-jc comparative adjective as adverb he fared worse 850

av-jn adj/noun as adverb duly, right honourable 1,100

av-js superlative adjective as adverb in you it best lies 150

av-n1 noun as adverb had been cannibally given 2

av-s superlative adverb soonest 14

avs-jn superlative adj/noun as adverb hee being the worthylest constant 0

av-vvg present participle as adverb lovingly 250

av-vvn past participle as adverb Stands Macbeth thus amazedly 85

av-x negative adverb never 1,300

c-acp acp word as conjunction since I last saw him 14,000

cc coordinating conjunction and, or 42,500

cc-acp
acp word as coordinating
conjunction

but 6,500

c-crq wh-word as conjunction when she saw 6,500

ccx negative conjunction nor 1,200

crd numeral 2, two, ii 5,700

cs subordinating conjunction if 6,500

cst 'that' as conjunction I saw that it was hopeless 14,000

d determiner that man, much money 29,500

10/01/13 MorphAdorner Page 102

dc comparative determiner less money 850

dg determiner in possessive use the latter's 7

ds superlative determiner most money 450

dt article a man, the man 7,000

dx negative determiner as adverb no money 2,500

fw-fr French word monsieur 500

fw-ge German word Herr 15

fw-gr Greek word kurios 15

fw-it Italian word signor 10

fw-la Latin word dominus 400

fw-mi word in unspecified other language n/a 50

j adjective beautiful 49,500

j-av adverb as adjective the then king 1

jc comparative adjective handsomer 1,500

jc-jn comparative adj/noun yet she much whiter 70

jc-vvg
present participles as comparative
adjective

for what pleasinger then varietie, or
sweeter then flatterie?

1

jc-vvn
past participle as comparative
adjective

shall find curster than she 1

j-jn adjective-noun the sky is blue 7,000

jp proper adjective Athenian philosopher 800

js superlative adjective finest clothes 1,500

js-jn superlative adj/noun reddest hue 200

js-vvg
present participle as superlative
adjective

the lyingest knave in Christendom 2

js-vvn
past participle as superlative
adjective

deformed'st creature 3

j-vvg present participle as adjective loving lord 2,000

j-vvn past participle as adjective changed circumstances 2,500

n1 singular, noun child 14,000

n1-an noun-adverb as singular noun my home 250

n1-j adjective as singular noun a good 4

n2 plural noun children 35,000

n2-acp acp word as plural noun
and many such-like "As'es" of great
charge

1

n2-an noun-adverb as plural noun all our yesterdays 9

n2-av adverb as plural noun and are etcecteras no things 1

10/01/13 MorphAdorner Page 103

n2-dx
determiner/adverb negative as
plural noun

yeas and honest kerysey noes 0

n2-j adjective as plural noun give me particulars 200

n2-jn adj/noun as plural noun the subjects of his substitute 600

n2-vdg
present participle as plural noun,
'do'

doings 50

n2-vhg
present participle as plural noun,
'have'

my present havings 1

n2-vvg present participle as plural noun the desperate languishings 200

n2-vvn past participle as plural noun
there was no necessity of a Letter of
Slains for Mutilation

0

ng1 singular possessive, noun child's 2,500

ng1-an
noun-adverb in singular possessive
use

Tomorrow's vengeance 6

ng1-j adjective as possessive noun the Eternal's wrath 1

ng1-jn adj/noun as possessive noun our sovereign's fall 60

ng1-vvn past participle as possessive noun the late lamented's house 0

ng2 plural possessive, noun children's 350

ng2-jn adj/noun as plural possessive noun mortals' chiefest enemy 50

n-jn adj/noun as noun a deep blue 2,300

njp proper adjective as noun a Roman 130

njp2 proper adjective as plural noun The Romans 1,300

njpg1 proper adjective as possessive noun The Roman's courage 8

njpg2
proper adjective as plural
possessive noun

The Romans' courage 20

np1 singular, proper noun Paul 27,500

np2 plural, proper noun The Nevils are thy subjects 350

npg1 singular possessive, proper noun Paul's letter 2,600

npg2 plural possessive, proper noun will take the Nevils' part 6

np-n1 singular noun as proper noun at the Porpentine 260

np-n2 plural noun as proper noun such Brooks are welcome to me 2

np-ng1
singular possessive noun as proper
noun

and through Wall's chink 20

n-vdg present participle as noun, 'do' my doing 20

n-vhg present participle as noun, 'have' my having 0

n-vvg present participle as noun the running of the deer 1,500

n-vvn past participle as noun the departed 50

ord ordinal number fourth 2,500

10/01/13 MorphAdorner Page 104

p-acp acp word as preposition to my brother 57,000

pc-acp acp word as particle to do 19,000

pi singular, indefinite pronoun one, something 2,200

pi2 plural, indefinite pronoun from wicked ones 50

pi2x plural, indefinite pronoun To hear my nothings monstered 2

pig
singular possessive, indefinite
pronoun

the pairings of one's nail 35

pigx possessive case, indefinite pronoun nobody's 2

pix indefinite pronoun none, nothing 1,300

pn22 2nd person, personal pronoun you 9,000

pn31 3rd singular, personal pronoun it 10,500

png11
1st singular possessive, personal
pronoun

a book of mine 220

png12
1st plural possessive, personal
pronoun

this land of ours 35

png21
2nd singular possessive, personal
pronoun

this is thine 3

png22
2nd person, possessive, personal
pronoun

this is yours 100

png31
3rd singular possessive, personal
pronoun

a cousin of his 200

png32
3rd plural possessive, personal
pronoun

this is theirs 30

pno11
1st singular objective, personal
pronoun

me 5,000

pno12
1st plural objective, personal
pronoun

us 1,100

pno21
2nd singular objective, personal
pronoun

thee 1,200

pno31
3rd singular objective, personal
pronoun

him, her 12,000

pno32
3rd plural objective, personal
pronoun

them 4,700

pns11
1st singular subjective, personal
pronoun

I 14,500

pns12
1st plural subjective, personal
pronoun

we 2,200

pns21
2nd singular subjective, personal
pronoun

thou 2,000

pns31 3rd singular subjective, personal he, she 21,000

10/01/13 MorphAdorner Page 105

pronoun

pns32
3rd plural objective, personal
pronoun

they 5,600

po11 1st singular, possessive pronoun my 6,700

po12 1st plural, possessive pronoun our 1,400

po21 2nd singular, possessive pronoun thy 1,650

po22 2nd person possessive pronoun your 3,000

po31 3rd singular, possessive pronoun its, her, his 19,000

po32 3rd plural, possessive pronoun their 3,800

pp preposition in 23,000

pp-f preposition 'of' of 29,000

px11 1st singular reflexive pronoun myself 350

px12 1st plural reflexive pronoun ourselves 55

px21 2nd singular reflexive pronoun thyself, yourself 250

px22 2nd plural reflexive pronoun yourselves 30

px31 3rd singular reflexive pronoun herself, himself, itself 1,300

px32 3rd plural reflexive pronoun themselves 220

pxg21
2nd singular possessive, reflexive
pronoun

yourself's remembrance 1

q-crq interrogative use, wh-word Who? What? How? 3,000

r-crq relative use, wh-word the girl who ran 10,000

sy alphabetical or other symbol A, @ 50

uh interjection oh! 3,000

uh-av adverb as interjection Well! 300

uh-crq wh-word as interjection Why, there were but four 500

uh-dx negative interjection No! 500

uh-j adjective as interjection Grumio, mum! 7

uh-jn adjective/noun as interjection And welcome, Somerset 30

uh-n noun as interjection Soldiers, adieu! 200

uh-v verb as interjection My gracious silence, hail 90

vb2 2nd singular present of 'be' thou art 300

vb2-imp 2nd plural present imperative, 'be' Beth pacient 10

vb2x 2nd singular present, 'be' thow nart yit blisful 2

vbb present tense, 'be' are, be 3,300

vbbx present tense negative, 'be' aren't, ain't, beant 60

vbd past tense, 'be' was, were 14,000

vbd2 2nd singular past of 'be' thou wast, thou wert 50

10/01/13 MorphAdorner Page 106

vbd2x 2nd singular past, 'be' weren't 0

vbdp plural past tense, 'be'
whose yuorie shoulders weren
couered all

30

vbdx past tense negative, 'be' wasn't, weren't 75

vbg present participle, 'be' being 1,300

vbi infinitive, 'be' be 5,600

vbm 1st singular, 'be' am 1,200

vbmx 1st singular negative, 'be' I nam nat lief to gabbe 3

vbn past participle, 'be' been 1,800

vbp plural present, 'be' Thise arn the wordes 260

vbz 3rd singular present, 'be' is 6,900

vbzx 3rd singular present negative, 'be' isn't 100

vd2 2nd singular present of 'do' dost 150

vd2-imp 2nd plural present imperative, 'do' Dooth digne fruyt of Penitence 6

vd2x 2nd singular present negative, 'do'
thee dostna know the pints of a
woman

2

vdb present tense, 'do' do 1,600

vdbx present tense negative, 'do' don't 500

vdd past tense, 'do' did 3,100

vdd2 2nd singular past of 'do' didst 55

vdd2x 2nd singular past negative, verb
Why, thee thought'st Hetty war a

ghost, didstna? 0.20

vddp plural past tense, 'do' on Job , whom that we diden wo 3

vddx past tense negative, 'do' didn't 90

vdg present participle, 'do' doing 110

vdi infinitive, 'do' to do 1,000

vdn past participle, 'do' done 700

vdp plural present, 'do'
As freendes doon whan they been
met

30

vdz 3rd singular present, 'do' does 800

vdzx 3rd singular present negative, 'do' doesn't 20

vh2 2nd singular present of 'have' thou hast 250

vh2-imp
2nd plural present imperative,
'have'

O haveth of my deth pitee! 1

vh2x
2nd singular present negative,
'have'

hastna 0

vhb present tense, 'have' have 2,500

vhbx present tense negative, 'have' haven't 30

10/01/13 MorphAdorner Page 107

vhd past tense, 'have' had 6,000

vhd2 2nd singular past of 'have' thou hadst 35

vhdp plural past tense, 'have' Of folkes that hadden grete fames 10

vhdx past tense negative, 'have' hadn't 20

vhg present participle, 'have' having 730

vhi infinitive, 'have' to have 2,400

vhn past participle, 'have' had 220

vhp plural present, 'have' They han of us no jurisdiccioun, 120

vhz 3rd singular present, 'have' has, hath 1,700

vhzx 3rd singular present negative, 'have'
Ther loveth noon, that she nath why
to pleyne.

11

vm2 2nd singular present of modal verb wilt thou 360

vm2x
2nd singular present negative,
modal verg

O deth, allas, why nyltow do me
deye

4

vmb present tense, modal verb can, may, shall, will 8,300

vmb1 1st singular present, modal verb
Chill not let go, zir, without vurther
'cagion

3

vmbx present tense negative, modal verb cannot; won't; I nyl nat lye 700

vmd past tense, modal verb could, might, should, would 8,300

vmd2 2nd singular past of modal verb
couldst, shouldst, wouldst; how gret
scorn woldestow han

120

vmd2x 2nd singular present, modal verb
Why noldest thow han writen of
Alceste

5

vmdp plural past tense, modal verb
tho thinges ne scholden nat han ben
doon

30

vmdx past negative, modal verb
couldn't; She nolde do that vileynye
or synne

160

vmi infinitive, modal verb
Criseyde shal nought konne knowen
me.

5

vmn past participle, modal verb I had oones or twyes ycould 2

vmp plural present tense, modal verg and how ye schullen usen hem 25

vv2 2nd singular present of verb thou knowest 480

vv2-imp 2nd present imperative, verb
For, sire and dame, trusteth me right
weel,

80

vv2x 2nd singular present negative, verb
"Yee!" seyde he, "thow nost what
thow menest;

1

vvb present tense, verg they live 17,000

vvbx present tense negative, verb
What shall I don? For certes, I not
how

30

10/01/13 MorphAdorner Page 108

vvd past tense, verb knew 33,000

vvd2 2nd singular past of verb knewest 75

vvd2x 2nd singular past negative, verb thou seidest that thou nystist nat 0

vvdp past plural, verb They neuer strouen to be chiefe 80

vvdx past tense negative, verb she caredna to gang into the stable 10

vvg present participle, verb knowing 13,700

vvi infinitive, verb to know 36,000

vvn past participle, verb known 26,200

vvp plural present, verb
Those faytours little regarden their
charge

330

vvz 3rd singular preseent, verb knows 7,200

vvzx 3rd singular present negative, verb She caresna for Seth. 1

xx negative not 7,800

zz unknown or unparsable token n/a 200

10/01/13 MorphAdorner Page 109

Parser
MorphAdorner includes a Java port of the Carnergie Mellon University link grammar parser, a
syntactic parser for English. The link grammar parser is a natural language parser based on link
grammar theory. Given a sentence, the system assigns to the sentence a syntactic structure consisting of
a set of labeled links connecting pairs of words. The parser also produces a "constituent" representation
of a sentence (showing noun phrases, verb phrases, etc.). More information is available at:
http://www.link.cs.cmu.edu/link/.

Note that the parser uses the Penn Treebank part of speech tag set, not the NUPOS tag set.

You can try MorphAdorner's link grammar parser online.

10/01/13 MorphAdorner Page 110

http://morphadorner.northwestern.edu/morphadorner/parser/example/
http://www.link.cs.cmu.edu/link/

Part of Speech Tagging
Part of speech tagging is the process of adorning or "tagging" words in a text with each word's
corresponding part of speech. Part of speech tagging is based both on the meaning of the word and its
positional relationship with adjacent words. A simple list of the parts of speech for English includes
adjective, adverb, conjunction, noun, preposition, pronoun, and verb. For computational purposes,
however, each of these major word classes is usually subdivided to reflect more granular syntactic and
morphological structure.

MorphAdorner can adorn each spelling in a text with a part of speech. To do this MorphAdorner
requires a definition of the part of speech tag set, and a training corpus containing a large swatch of text
containing spellings already correctly adorned with their parts of speech. From this training data
MorphAdorner can generate tagging rules, tag probability matrices, and a lexicon of known words.

MorphAdorner provides several different part of speech taggers. We expect only two will be widely
used.

• The MorphAdorner trigram tagger uses a hidden Markov model and a beam-search variant of
the Viterbi algorithm. We expect this will be the primary tagger. You can read a brief description
of mathematical basis of the trigram tagger on page 114.

• The MorphAdorner rule-based tagger is a modified version of Mark Hepple's rule-based tagger.
Hepple's tagger is a variant of Eric Brill's tagger but disallows interaction between rules. We
expect the Hepple tagger to be used as a secondary tagger to correct the output of the trigram
tagger.

The MorphAdorner part of speech taggers assign tags to unknown words using pattern recognition for
items such as numbers and Roman numerals, and suffix analysis with successive abstraction when the
pattern recognition methods fail. For example, the suffix ly in English often indicates the word is an
adverb, while the suffix ing often indicates the word is a gerund (an obvious counterexample is
"spring"). By looking at the statistical distribution of endings and part of speech tags in the training
data, along with the sequence of previous parts of speech, MorphAdorner can often guess correctly the
part of speech for a word it doesn't know. When all the pattern recognition methods fail, the word is
assumed to be a noun.

You can see a detailed list of the pattern recognition methods MorphAdorner uses to assign parts of
speech to unknown words on page .

Part of speech tagging of English texts from the Early Modern English period to the present raises
several problems. Most part of speech tag sets for English were devised for use with modern texts.
These tag sets lack the necessary tags to represent English usage that was either current at an earlier
time or was archaic at its time of origin but remained current in restricted discursive environments,
such as religion or poetry. The second person singular of pronouns and verb forms is the clearest
example. An -n form that marks a plural present is much rarer but not uncommon as a deliberate
archaism in Shakespeare's time.

Modern taggers rely on 's or s' to identify the possessive case. They also rely on sentence medial
capitalization to extract names. These procedures don't work once you move back to the 18th century.

By default MorphAdorner uses a part of speech tag set designed by Martin Mueller. NUPOS (see page
94) as it is called, differs from modern tag sets in recognizing all morphological forms that are found in

10/01/13 MorphAdorner Page 111

written English from Chaucer to the present. Like the tag set used for the Brown corpus but unlike the
Penn Treebank or CLAWS tag sets, NUPOS does not split the possessive case as a separate token and
uses compound tags for contracted forms.

Part of speech tags tend to be somewhat inconsistent compounds of syntactic and morphological
information. In NUPOS the components of each tag are kept separately and the grammatical
description of each word can be easily identified at a minimal level of granularity (~20 tags) or at a
maximum level (~230 tags).

MorphAdorner can use any arbitrary tag set given appropriate training data and a proper definition of
the word class and major word class of each tag.

The Trigram tagger assigns the part of speech tag correctly about 96% to 97% of the time. The
accuracy can be expected to improve as the training lexicon grows.

You can try MorphAdorner's trigram part of speech tagger online. This example only accepts plain text
as input.

Guessing Parts of Speech for Unknown Words

A program like MorphAdorner assigns a part of speech tag to each token in an input text, e.g., this
word token is a noun or this token is a period. This task is difficult since many words can take on more
than one part of speech. Determining which part of speech applies to a particular word occurrence
depends upon the context in which the word appears.

A set of training data specifies a large number of words along with their potential parts of speech in
actual reading contexts. This combination of known words and parts of speech, along with statistical
methods and/or context rules, allows a program like MorphAdorner to assign correct parts of speech to
words in new texts about 97% of the time, as long as all the words in the new texts are known. That is,
the words have been encountered in the training data with all their possible parts of speech, or the
words appear in supplemental dictionaries along with their parts of speech.

Unfortunately many words in new texts will not have been seen in the training data and will not occur
in a supplemental dictionary. This means a program like MorphAdorner must "guess" the relevant
possible parts of speech for an unknown word to assign a proper part of speech tag in context.

MorphAdorner uses a variety of techniques to guess the possible parts of speech for an unknown word.
The default MorphAdorner guesser applies the following methods, in order, until at least one potential
part of speech is identified. A programmer can modify or replace this default guesser, and several
MorphAdorner configuration settings allow you to modify the guessing process as well.

1. Is the word punctuation?

Examples: period, quote mark, question mark, sequence of periods

Assign the punctuation or punctuation class as the part of speech.

2. Is the word a symbol?

Examples: A paragraph mark.

Assign the symbol class as the part of speech.

3. Is the word a cardinal number?

Examples: 12, 12.5

10/01/13 MorphAdorner Page 112

http://morphadorner.northwestern.edu/morphadorner/postagger/example/

Assign the cardinal number class as the part of speech.

4. Is the word an ordinal number?

Examples: 1st, 12th

Assign the ordinal number class as the part of speech.

5. Is the word a currency amount?

Examples: $12.50, 1L, 1Ã‚Â£, Ã‚Â£10

Assign the cardinal number class as the part of speech.

6. Is the word a Roman numeral?

Examples: I, V, IX, .IX., .IX, MMM, IIIJ

Assign the cardinal number class as the part of speech. For Roman numerals that can also be
initials (I, V) or English pronouns (I), add the proper noun and appropriate pronoun classes as
well.

Note that the definition of a Roman numeral is much looser in older texts than is defined in
contemporary usage.

7. Is the word an ordinal Roman numeral?

Examples: xviith

Assign the ordinal number part of speech class.

8. Is the word hyphenated?

Examples: head-master, sea-serpent

MorphAdorner extracts the part of the word after the last hyphen. If that is a known word,
assign its part of speech classes.

The following cases are treated specially.

• a letter followed by ---'s is considered a possessive noun.
• ---'s or ---'S is considered a possessive noun.
• a letter followed by --- is considered a proper or common possessive noun, or an

exclamation.
9. Is a spelling standardizer defined?

If so, get the parts of speech for the standardized spelling.

Example: "vniversitie" regularizes to "university"

Assign the part of speech classes for "university" if known.

10.Is the word a proper name?

MorphAdorner defines some auxiliary word lists containing lists of proper names for people
and places. If the word appears on one of these "name" lists, assign the proper noun class.

11.Is the word defined by an auxiliary word list?

MorphAdorner defines some auxiliary word lists which define words and possible part of
speech classes for those words. If the word appears on one of these lists, assign the associated

10/01/13 MorphAdorner Page 113

part of speech classes defined in the lists.

12.Is the word an abbreviation?

Examples: U.S., p.m.

If the word appears to be an abbreviation, assign a proper noun class if it begins with a capital
letter, or a common noun class if it does not begin with a capital letter.

13.Is a suffix lexicon defined?

If so, perform the following suffix analysis.

For each successively shorter ending substring of the word, look up that substring in the suffix
lexicon. If the substring exists in the suffix lexicon, assign its part of speech classes as those of
the unknown word.

Example: reputedly

Look up the successively shorter terminal strings:

reputedly
eputedly
putedly
utedly
tedly
edly
dly
ly
y

and stop at the first of those suffix strings which appears in the suffix lexicon, and use the
associated part of speech classes.

14.Is the word entirely in upper case?

Example: MCDOODLE

Assign the singular proper noun part of speech class.

15.If all else fails, assume the word is a noun.

If the word begins with a capital letter and ends with "s", assume it is a plural proper noun.

If the word begins with a capital letter and does not end with "s", assume it is a singular proper
noun.

If the word does not begin with a capital letter and ends with "s", assume it is a plural common
noun.

If the word does not begin with a capital letter and does not end with "s", assume it is a singular
common noun.

Trigram Tagger Mathematical Background

Assume that the part of speech tag for a word depends only upon the previous one or two tags, and that
the probability of this tag does not depend upon the probabilities of subsequent tags. How do we find

10/01/13 MorphAdorner Page 114

the most probable sequence of tags corresponding to a particular sequence of words? We can look at
the sequence of part of speech tags for words as an instance of a Hidden Markov Model HMM).
Finding the most probable part of speech tag sequence amounts to finding the most probable sequence
of states which the Hidden Markov Model traverses for a particular sequence of words.

The Trigram Tagger in MorphAdorner seeks the most likely part of speech tag for a word given
information about the previous two words. More precisely, the tag sequence t1, t2, ..., tn --

corresponding to the word sequence w1, w2, ..., wn -- is sought which maximizes the following

expression:

P(t1)P(t2|t1)PRODUCT(i=3 to n) P(ti|ti-2,ti-1)PRODUCT(i=1 to n)

P(wi|ti)

where

P(t) Contextual (tag transition) probability
P(w|t) Lexical (word emission) probability

Each P(wi|ti) is estimated using the maximum likelihood estimator:

PMLE(ti|ti-2,ti-1) = C(ti-2,ti-1,ti) / C(ti-2,ti-1)

where C(x) is the observed single or joint frequency for the words or tags. To account for "holes" in the
frequencies, where some possible combinations are not observed, we can compute smoothed
probabilities which reduce the maximum likelihood estimates a little bit to allow a bit of the overall
probability to be assigned to unobserved combinations. By default MorphAdorner uses a simple
additive smoother which adds small positive values to the numerator and denominator of the
probability estimate above. The numerator value is a small constant such as 0.05, while the
denominator value is the numerator constant multiplied by the size of the word lexicon L.

Psmoothed(ti|ti-2,ti-1) = (C(ti-2,ti-1,ti) + 0.05) / (C(ti-2,ti-1)

+ (0.05 * L))

This works well when the training data size is large (as it is for MorphAdorner). For smaller training
sets, deleted interpolation may prove more effective. MorphAdorner provides a deleted interpolation
smoother as an option.

Each P(wi|ti) is estimated using the maximum likelihood estimator:

PMLE(wi|ti) = C(wi , ti) / C(ti)

Again, MorphAdorner smooths the maximum likelihood estimates using additive smoothing. This time
0.5 is used as the additive numerator value, and the denominator multiplier is K, the number of
potential part of speech tags for the word wi. This is commonly called Lidstone smoothing.

Psmoothed(wi|ti) = (C(wi , ti) + 0.5) / (C(ti) + (0.5 * K))

10/01/13 MorphAdorner Page 115

It is possible but inefficient to calculate the probabilities using complete enumeration of all possible
values of t1, t2, ..., tn. In the worst case the time complexity is nT where T is the number of part of

speech tags in the tag set. MorphAdorner applies the Viterbi algorithm, a dynamic programming
algorithm to determine the optimal subpaths for each state in the HMM model as the algorithm
traverses the model. Subpaths other than the most probable are discarded. MorphAdorner also restricts
the search path even further using a beam search which discards paths whose probabilities are too small
compared to a specified tolerance value to contribute significantly to the joint probability.

10/01/13 MorphAdorner Page 116

Pluralizer
Pluralization is the process of inflecting a singular noun by adding affixes or changing certain letters
in the singular noun form to give the plural form.

The plural form of many nouns in English can be formed as follows.

1. Add "s" to the singular form to form the plural. Example: dog -> dogs.
2. Add "es" for singular nouns ending in a sibilant sound. Example: dress -> dresses.
3. Change the terminal "y" to "i" and then add "es" when the singular noun ends in "y" not

preceded by a vowel (or is not a proper name). Example: spy -> spies.

Unfortunately there are many English nouns whose plurals do not follow the rules above. A description
may be found in Damien Conway's paper at An Algorithmic Approach to English Pluralization .
MorphAdorner implements Conway's pluralization procedure for nouns. MorphAdorner always
produces non-classical plurals.

You can try MorphAdorner's English noun pluralizer online.

10/01/13 MorphAdorner Page 117

http://www.csse.monash.edu.au/~damian/papers/HTML/Plurals.html
http://morphadorner.northwestern.edu/morphadorner/pluralizer/example/

Sentence Splitting
Extracting words and sentences from a text are fundamental operations required by other language
processing functions. Word Tokenization (see page 132) splits a text into words and
punctuation marks. Sentence splitting assembles the tokenized text into sentences.

Recognizing the end of a sentence is not an easy task for a computer. In English, punctuation marks
that usually appear at the end of a sentence may not indicate the end of a sentence. The period is the
worst offender. A period can end a sentence but it can also be part of an abbreviation or acronym, an
ellipsis, a decimal number, or part of a bracket of periods surrounding a Roman numeral. A period can
even act both as the end of an abbreviation and the end of a sentence at the same time. Other the other
hand, some poems may not contain any sentence punctuation at all.

Another problem punctuation mark is the single quote, which can introduce a quote or start a
contraction such as 'tis. Leading-quote contractions are uncommon in contemporary English texts, but
appear frequently in Early Modern English texts.

Few literary texts which have already been marked up using SGML or XML recognize sentences in the
markup. (The Chadwick-Healey archive of eighteenth century novels is a notable counterexample.)
Sentences often cross other element boundaries. Texts without sentence markup require preprocessing
to add it without disturbing the existing markup. This allows further processing of the texts, in
particular, part of speech tagging, and name recognition. MorphAdorner allows pluggable input and
output processors to handle reification of texts and addition of extra markup as needed.

MorphAdorner's default sentence splitter uses the ICU4JBreakIterator class along with a set of
heuristics (see below) for determining if two or more sentences generated by ICU4JBreakIterator
should be joined into one sentence. The heuristics include special treatment of sentence-ending
brackets (right parenthesis, right bracket, and right brace), abbreviations, and interjections. The
resulting sentence extraction is not perfect but is better than ICU4JBreakIterator's splitting and much
better than naive splitting methods.

You can try MorphAdorner's default sentence splitter online. This example only demonstrates sentence
splitting for plain text. While the sentence splitter works best for English, some support is included for
other languages, including those with non-Roman alphabets. Note that some languages, such as modern
Japanese, provide unambiguous sentence markers. MorphAdorner uses these when present.

Sentence Splitter Heuristics

The article Finding text boundaries in Java by Rich Gillam describes the Java BreakIterator which
underlies the ICU4JBreakIterator class used by MorphAdorner to obtain an initial deconstruction of
text into sentences. MorphAdorner only uses ICU4JBreakIterator to provide initial sentence
boundaries. MorphAdorner's word tokenizer uses its own methods for determining token boundaries
within a sentence.

Abbreviations

The period ending an abbreviation may act as both a part of the abbreviation and the end of a sentence.
MorphAdorner maintains a list of common abbreviations along with a flag indicating if the
abbreviation usually can end a sentence. MorphAdorner will not split a sentence after an abbreviation
which is not designated as a potential sentence ender.

10/01/13 MorphAdorner Page 118

http://underpop.online.fr/j/java/boundaries/boundaries.pdf
http://morphadorner.northwestern.edu/morphadorner/sentencesplitter/example/

For example, the abbreviation Mrs. rarely ends a sentence, so MorphAdorner does not issue sentence
splits following Mrs. Thus

Mrs. Smith was here earlier.

is correctly considered a single sentence, while

I will leave it up to the Mrs. She will know what to do.

which should be two sentences (with a split after Mrs.) is also treated as a single sentence by
MorphAdorner. This could be handled by recognizing that Mrs. can end a sentence when followed by
something other than a proper name.

When an abbreviation can end a sentence, MorphAdorner tries to determine if a particular use ends a
sentence or not by looking for possible verbs before and after the abbreviation. MorphAdorner does not
split the sentence after the abbreviation unless it has found a possible verb in the sentence preceding the
abbreviation. MorphAdorner does not use detailed part of speech information during sentence splitting.
However, the parts of speech for any word can be looked up in the word lexicon or determined using a
part of speech guesser. That is sufficient to guide the sentence splitting algorithm in many but not all
cases.

MorphAdorner splits the text

I mailed the letter early in the a.m. The next step is to wait for a reply.

correctly into two sentences following a.m., while

I mailed the letter early in the a.m. the next day too.

is left unsplit.

MorphAdorner correctly leaves unsplit the following sentences.

She needs her car by 5 p.m. Saturday evening.
At 5 p.m. I had to go to the bank.
She has an appointment at 5 p.m. Saturday afternoon.
By 5 p.m. Sunday I have to be at home.

MorphAdorner correctly splits the following text into two sentences following p.m.:

It was due Friday at 5 p.m. Saturday afternoon would be too late.

The text

She has an appointment at 5 p.m. Saturday afternoon to get her car fixed.

should be left as a single sentence, but MorphAdorner splits it into two sentences with the split
occurring after p.m. While both get and fixed can be verbs, neither appears in context as the the right
kind of verb form to allow the text following p.m. to be considered a sentence.

MorphAdorner does not recognize abbreviations containing blanks, such as "U. S." for United States.
However, "U.S." without the blank is recognized.

Characters not allowed to start a sentence

MorphAdorner does not allow a sentence to start with a comma, a period, or a percent sign. These
characters will be attached to the previous token and/or sentence, if any. Dashes and hyphens are joined

10/01/13 MorphAdorner Page 119

preferentially to the end of a sentence rather than the start of a sentence.

Interjections

MorphAdorner maintains a list of common interjections, These are words typically used for emphasis,
and generally followed by an exclamation mark or question mark. MorphAdorner does not split the
sentence following the interjection, and it leaves the question mark or exclamation point attached to the
interjection word. The situation can become ambiguous when quote marks are involved.

MorphAdorner treats the following lines as single sentences.

What! That's bad!

"What! That's bad!"

On the other hand, the following line is treated as two sentences.

"What!" "That's bad!"

"What!" is the first sentence and "That's bad!" is the second sentence.

Numbers

A period following a number may act as both a decimal point and the end of a sentence (in English). In
general, MorphAdorner ends a sentence following a number ending in a period when the next word
begins with a capital letter. The following text is considered one sentence by MorphAdorner.

There are 12. of them.

MorphAdorner splits each of the following two lines into two sentences following 12.

There are 12. More would be unnecessary.

There are 12. "More would be unnecessary."

10/01/13 MorphAdorner Page 120

Spelling Standardization
English texts of the past exhibit far greater spelling variance than contemporary texts. Texts from the
seventeenth century and earlier times use conventions that differ from contemporary standards in the
use of "u" and "v" and "y" and capitalization, among others. Often the same words is spelled differently
even within the same work. By the eighteenth-century texts employ much more modern orthographic
standards, except for capitalization.

MorphAdorner uses rules, word lists, and extended search techniques such as spelling correction
methods and other heuristics to map variant spellings to their standard (usually modern) form. For
obsolete words no longer in use, a representative standard form is chosen which is usually the Oxford
English Dictionary headword form. Presently MorphAdorner knows a couple of hundred thousand
variant spellings. Using this list, MorphAdorner can automatically determine the correct standard form
for previously unseen spellings in many cases.

Sometimes a new spelling is just too different from any of the ones MorphAdorner already knows.
Using the extended search facilities on such a spelling may result in a "standard spelling" which veers
far from the correct form. As time goes one we hope to reduce the occurrence of such errors.

Orthographic standardization improves the quality of part of speech tagging, name recognition, and text
searching. However, standardization by itself isn't sufficient to fix some other problems. These include
the lack of the apostrophe to mark the possessive case and the inconsistent practices of capitalization as
markers of proper nouns.

In English before 1700 the apostrophe never indicates the genitive, and "her mother's daughter" is
written "her mothers daughter". An even more problematic example is "her majesty's daughter" which
appears in early texts as "her majesties daughter." The use of the apostrophe as a genetive marker
gained ground during the eighteenth century, and has been used as it is today since the early nineteenth
century.

In the eighteenth century, the apostrophe is sometimes used as a plural marker in certain character
combinations. Thus "canoe's" is much more likely to be a plural than a possessive form.

The modern practice of restricting capitalization to names, namelike entities, and certain emphatic uses
is about two centuries old. In earlier English nouns are freely capitalized, and capitalization is not a
reliable way of picking out proper nouns. However, proper nouns have usually been capitalized in all
forms of written English since about 1550. Before that names can appear in lower case.

In poetry the first word of each line is often capitalized even when that word does not start a sentence.
For purposes of part-of-speech tagging, a simple workaround is to use the lower case form of a word
that does not start a sentence, except if the word appears in a list of known proper names.

You can read a more detailed description of the spelling standardization process below.

You can try MorphAdorner's spelling standardizer online.

Standardization Process

This section describes the process by which MorphAdorner maps a variant spelling to a standard
(usually modern) form.

10/01/13 MorphAdorner Page 121

http://morphadorner.northwestern.edu/morphadorner/spellingstandardizer/example/

Spelling Map File Formats

Spelling maps are the key to MorphAdorner's methodology for standardizing or modernizing spelling.
A spelling map is a utf-8 text file contain two fields separated by a tab character. The first field is a
variant spelling. The second field is the standardized spelling for the variant.

Currently MorphAdorner uses two maps. The first is culled primarily from nineteenth century fiction
texts and currently contains about 5,000 entries. The second is culled from Early Modern English texts
and contains over 350,000 thousand known variants. There is also a short list of about 400 variants
which are known to vary by word class.

Here are some entries from the Early Modern English spelling map showing standard spellings for
forms of "advance." The first column is the variant, the second column is the standard spelling.

aduauce advance
aduauced advanced
aduauceing advancing
aduaucement advancement
aduauceth advanceth
aduaucing advancing
aduaucyng advancing
aduaucynge advancing
aduaunc'd advanced

The file of spellings by word class is similar except that it contains multiple sections. Each is headed by
a word class name by a colon. This is followed by the list of variant to standard spellings for that word
class. For example, the adjectives section starts:

adjective:
agean again
bad bad
blew blue
browne brown
chaste chaste
christen christian
clere clear
cliver clever
cold cold
cross cross
cumfbler cumfortabler

while the verb section starts:

verb:

10/01/13 MorphAdorner Page 122

d' do
'm am
'old hold
's is
aint aren't
ain't aren't
allays allays
an't aren't
ar are
ar' are
arena aren't
bad bade

Some spellings map to themselves when they have different standard spellings for different word
classes. The spelling "bad" is an example.

Standardization Steps

MorphAdorner attempts to standardize a spelling as follows.

1. Load the list of known standard spellings. This is a combination of entries from the 1911
Webster's Dictionary and entries verified against the Oxford English Dictionary from ongoing
work with the Monk project texts.

2. Load maps of known variant spellings to modern spellings as described above.

3. Create a ternary trie of all the standard and variant spellings. A ternary trie allows very efficient
extraction of strings within a specified edit distance of a given string. In other words, it allows
efficient extraction of list of words whose spellings are near to any given word's spelling.

4. Load a list of modernization rules. Currently MorphAdorner defines about 70 such rules which
can transform many variant spellings to their modern spellings, or come very close. The rules
also provide for correcting defective spellings that contain "gap" markers reflecting illegible
letters in the original text. Some sample rules include:

• Transform the ending "me~" to "men"
• Transform the ending "ynge" to "ing"
• Transform "uu" to "w"
• Transform "v" followed by a non-vowel to "u"

Now for each old spelling, perform the following steps.

1. Apply all the applicable transformation rules which results in an improved spelling. If this
spelling appears in the standard spellings list, we're done. For example, applying the rules to
strykynge directly produces the modern standard spelling striking.

2. See if the transformed spelling appears in the variant spellings map. If so, assign the mapped
spelling value as the standard spelling. We're done. For example, applying the rules to
vniuersitie produces universitie . This is not the modern spelling, but it is close. The mapped
spelling list for Early Modern English provides an entry for universitie, giving the modern

10/01/13 MorphAdorner Page 123

spelling as university.

3. Compile a list of words whose spellings are "close to" the transformed spelling by using the
ternary trie to search quickly for all words within a specified edit distance of the transformed
word.

4. Compute a measure of string similarity between each found spelling and the transformed
spelling. String similarity measures how similar two strings of characters are. A similarity of 0.0
indicates two strings are completely different, while a similarity of 1.0 indicates two strings are
identical. MorphAdorner uses a weighted similarity score based upon letter pair similarity,
phonetic distance, and edit distance.

5. Choose the found spelling with the highest similarity as the most probable correct/standard
spelling. If this spelling appears in the standard spellings list, we're done. If not, see if it appears
in the mapped spellings list. if so, take the mapped spelling value as the standard spelling, and
we're done. Otherwise, accept the transformed spelling as the standard spelling, with the proviso
that it may not be a proper standard spelling, and requires further review.

Interactions with Part Of Speech

The standard spelling for some words cannot be determined until the part of speech for the word is
known. Examples of such words include doe, bee, poor, marie, and wast. Thus "doe" is most likely
"doe" a female deer when it appears as a noun, while "doe" is most likely "do" when it appears as a
verb. When "marie" appears as an adjective it is probably "merry", but most likely "marry" when used
as a verb.

MorphAdorner keeps a short list of variant spellings by general word class. The final standardized
spelling is not assigned until a part of speech has been assigned, so these special cases can usually be
disambiguated properly.

Standardizing Proper Names

Proper names can appear with a bewildering variety of spellings even within a single work. Some
variants can be transformed to their modern standard forms by using the general standardization rules
presented above. For example, the spellings Syracvse and Vlysses, which are the commonest variants of
those proper name spellings in the TCP/EEBO version of Plutarch's Lives, both transform by rule to
their modern spellings Syracuse and Ulysses.

Other variants are not so easily rectified. The place name Cappadocia appears in Plutarch's Lives as

CPADOCIA 1
Cappadocia 21
OHPPADOCIA 1
Coppadocia 1
CAPRADOCIA 1

where the frequency of occurrence follows each variant.

MorphAdorner currently uses the following algorithm to look for standard spelling candidates for
proper names. This is a variant of the extended search algorithm for standard spellings described above.
Because we know we are looking for proper names, we can do a better job by limiting the search space

10/01/13 MorphAdorner Page 124

to known proper names.

Proper name search algorithm

1. Collect the list of known spellings of proper names (tagged with NUPOS parts of speech np1
and np2) in the early modern English lexicon. Currently there are around 66,000 such spellings.

2. Construct a "name" ternary trie of the lowercase versions of all these names. A ternary trie
allows very efficient extraction of strings within a specified edit distance of a given string.

3. Construct a "consonant" ternary trie of the lowercase versions of the names with all vowels
removed. For each unique combination of consonants (in order), store the list of spellings which
reduce to that consonant string.

For each unknown name, perform the following steps.

1. Find all strings in the "name" trie within a specified edit distance of the unknown name. An edit
distance of 2 seems to be a good choice.

2. If any names were found in step 1, compute a measure of string similarity between each found
name and the unknown name. Choose the found name with the highest similarity as the most
probable correct/standard spelling. Letter-pair similarity seems to work well as a measure of
string similarity, but there are many other possible choices.

3. If no names were found in step 1, find all strings in the "consonant" trie within a specified edit
distance of the unknown name with vowels removed. An edit distance of 3seems to be a good
choice.

4. If any consonant strings were found in step 3, perform the following steps for each consonant
string.

1. Pick up all the names which reduce to this consonant string.

2. For each of those names, compute a measure of string similarity between the name
and the unknown name (that is, between the full spellings).

3. Keep a list of those found names with a similarity score above a reasonable
threshhold. 0.75 seems to be a good choice.

4. Choose the found name with the highest similarity as the most probable
correct/standard spelling.

If no names were found by either lookup procedure, leave the unknown name alone.

Here is an example of the algorithm applied to the list of names above. In each case, only one candidate
spelling (the correct one, it turns out) was found.

Names near CPADOCIA

cappadocia (0.75)

Names near Cappadocia

cappadocia (1.0)

10/01/13 MorphAdorner Page 125

Names near OHPPADOCIA

cappadocia (0.7777777777777778)

Names near Coppadocia

cappadocia (0.7777777777777778)

Names near CAPRADOCIA

cappadocia (0.7777777777777778)

10/01/13 MorphAdorner Page 126

Syllable Counter
MorphAdorner includes a facility for counting the number of syllables in an English word. This is
useful as part of a scansion analysis.

THe printed versions of many early modern English plays were not written down by the original
authors, and existed only in ephemeral scripts for use by actors. While some authors such as Ben
Jonson took care to produce "official" versions of their plays for publication, many others did not, and
the original scripts were lost. The printed versions were instead reconstructed by asking actors who had
performed the plays to recite their parts from memory -- often years after their last performance.
Surprisingly these actors were often very good at recalling the lines of their own parts. They were less
accurate at recalling the lines spoken by others.

Since many of the plays were originally written in verse, usually in iambic pentameter, the quality of
the reconstructions can often be assessed by simply counting the number of syllables in words in each
line. Sections of the plays where the number of syllables do not match the required metrical format
typically indicate misremembered lines.

You can try MorphAdorner's syllable counter online.

10/01/13 MorphAdorner Page 127

http://morphadorner.northwestern.edu/morphadorner/syllablecounter/example/

Text Segmenter
Text Segmentation methods try to break up a text into thematically meaningful segments.
MorphAdorner implements two linear segmentation methods which use measures of lexical cohesion to
produce segments: Marti Hearst's TextTiler and Freddy Choi's C99. Both of these try to find those
portions of a text in which the vocabulary changes from one subtopic to another. These change points
mark the boundaries of the text segments.

Segmentation methods have been traditionally been applied to non-fiction discursive texts. We are
interested in investigating whether segmentation methods illuminate the thematic structure of a wider
span of genres in both fiction and non-fiction.

You can try MorphAdorner's linear text segmenters online.

10/01/13 MorphAdorner Page 128

http://morphadorner.northwestern.edu/morphadorner/textsegmenter/example/

Text Summarizer
A text summarizer attempts to produce a condensed version of text while retaining the most important
parts of the original text. Some summarizers extract the entirety of important sentences. Others actually
rewrite the sentences into a briefer form.

MorphAdorner contains a very simple-minded text summarizer. The summarizer accepts an English
language text and produces a summary by finding the (up to) 100 most commonly used words in a text
(not including stop words) and outputting the first sentence containing each common word. This works
adequately for short expository articles, but rather badly for literature.

You can try MorphAdorner's text summarizer online.

10/01/13 MorphAdorner Page 129

http://morphadorner.northwestern.edu/morphadorner/textsummarizer/example/

Thesaurus
A thesaurus allows you to find synonyms and antonyms of a specified word. MorphAdorner includes a
simple thesaurus facility based upon the venerable WordNet project. WordNet groups English words
into sets of synonyms called synsets. WordNet also offers brief definitions for words and provides
semantic relations among the synonym sets. While WordNet provides many other facilities in addition
to finding synonyms and antonyms, MorphAdorner currently exposes just a simple synonym and
antonym search.

WordNet only contains nouns, verbs, adjectives and adverbs. It does not include prepositions,
determiners, or other parts of speech.

You can try MorphAdorner's online thesaurus based upon WordNet synsets.

10/01/13 MorphAdorner Page 130

http://localhost:8080/morphadorner/thesaurus/example/
http://wordnet.princeton.edu/

Verb Conjugator
Conjugation is the process of inflecting a verb by adding affixes or changing certain letters in the base
verb form to give the verb a different syntactic function. The base verb or lemma form of a verb is
called the infinitive.

Most verbs in English can be conjugated as follows. Use the infinitive for most forms, except add "ed"
for the past and past participle, add "ing" for the present participle, and add "s" for the third person
singular. A few simple modifications are needed for the following cases.

1. When the infinitive ends in "e", add "d" for the past and past participle, and replace the final "e"
with "ing" for the present participle.

2. When the infinitive ends in ch, s, sh, x, or z , add "es" to create the third person present.
3. When the infinitive ends in a consonant preceded by a short vowel (e.g., "chop"), double the

final consonant and add "ed" to the infinitive form to create the past and past participle, double
the final consonant and add "ing" to create the present participle, and add "s" to create the third
person present.

4. When the infinitive ends in "y", replace the final "y" with "ied" to create the past and past
participle, add "ing" to create the present participle, and replace the final "y" with "ies" to create
the third person present.

There are American/British differences as regards consonant doubling. MorphAdorner maintains a list
of verbs whose final consonant is typically doubled in British English, and always doubles the
consonant for verbs on that list. Optionally, MorphAdorner knows how to generate the American
spelling without the doubled terminal consonant for many common forms.

Verbs whose conjugations follow the rules above are called regular verbs. Verbs which do not follow
these rules are called irregular verbs. English has several hundred irregular verbs, which include some
of the most commonly used. MorphAdorner checks a list of irregular verb forms before applying the
regular conjugation rules above. There are a few ambiguities since some common verbs take different
forms depending upon their meaning. Examples include:

infinitive past past participle

hang (put to death) hanged hanged

hang (a photo) hung hung

lie (recline) lay lain

lie (tell a falsehood) lied lied

Some verbs can take either regular or irregular past or past participle forms (examples: shine, kneel,
light, prove, wake). MorphAdorner usually generates the regular form unless the irregular form appears
to be more commonly used.

You can try MorphAdorner's English verb conjugator online.

10/01/13 MorphAdorner Page 131

http://morphadorner.northwestern.edu/morphadorner/conjugator/example/

Word Tokenization
Extracting words and sentences from a text are fundamental operations required by other language
processing functions. Word tokenization splits a text into words and punctuation marks. Sentence
splitting (see page 118) assembles the tokenized text into sentences.

The first step in word tokenization is recognizing word boundaries. The tokenizer uses white space
such as blanks and tabs as the primary cue for splitting the text into tokens. Punctuation marks are split
from the initial tokens. This is not as easy as it sounds. For example, when should a token containing a
hypen be split into two or more tokens? When does a period indicate the end of an abbreviation as
opposed to a sentence or a number or a Roman numeral? Sometimes a period can act as a sentence
terminator and an abbreviation terminator at the same time. When should a single quote be split from a
word? Early modern English included many contractions such as 'tis with a leading quote.

MorphAdorner's tokenizers use a number of heuristics and a list of common abbreviations to produce a
sequence of punctuation and spellings that will be consistent with the subsequent operations of
sentence boundary identification, part of speech tagging, and lemmatization. Different part of speech
tag sets may require different tokenization. The Penn Treebank tag set assumes contractions should be
split into separate tokens. Thus the token can't appears as two tokens, can and 't. The NUPOS tag set
can work with tokens split this way, but at present we prefer to keep contracted forms as a single token.

Even when the text has been more-or-less correctly tokenized the individual tokens may still be
erroneous. The digital text of many Early Modern English works was created using scanners and
optical character recognition (OCR) software. Such digitized text frequently contains all manner of
orthographic errors. Example include substitution of "~" for the letters "m" or "n" and mapping of the
archaic long "s" as the letter "f". Some of these errors can be corrected automatically using heuristics
and a spelling standardizer.

In the print world, a punctuation mark does not count as a word. Instead punctuation separates groups
of words. In computer terms, punctuation is a kind of "meta-data", not so qualitatively different from
SGML or XML markup. MorphAdorner's word tokenizers treat punctuation marks as words. This
procedure is justified because the punctuation "meta-data" added by authors (or editors) lives at the
same level of data as the words and allows a consistent treatment of token transition probabilities for
adornment processes such as part of speech tagging.

You may be interested in reading below about some tokenization problems we encountered while
processing literary texts.

You can try MorphAdorner's default word tokenizer online. The example only works with plain
unmarked text.

Word Tokenization Problems

The following presents some of the problems and solutions encountered while developing the word
tokenizers for MorphAdorner. One important general principle is that MorphAdorner's word tokenizer
and sentence splitter iterate back and forth as needed to achieve the best possible sentence splitting and
tokenization.

Commas in numbers

MorphAdorner treats a comma as a separator in all cases except when a comma appears in the middle

10/01/13 MorphAdorner Page 132

http://morphadorner.northwestern.edu/morphadorner/wordtokenizer/example/

of a number. For example, the string 1,250 represents a number (one thousand two hundred fifty).
MorphAdorner leaves such number strings intact so that the part of speech taggers can treat it as a
number.

Missing whitespace after a period

Many sentences in literary text transcriptions run together without a space after the period. Example:

 systematic."How

Here the sentence should be split after the period and before the double quote.

For

 systematic.'How

the sentence split should occur on the single quote because contractions should rarely, if ever, have a "."
followed by a single quote.

Some commonly merged forms should always be split:

 Mr.Capitalname -> Mr. Capitalname
 &c.crap -> &c. crap
 Mrs.Howell -> Mrs. Howell
 St.Miriam
 Mr.Doyce!
 Dr.Mull
 Mr.R.'s -> Mr. R.'s

Examples of other merged strings which should be split include

 stairs.The
 pleasing.How
 emotions.What!
 bloodthirstiness.The
 on.Think
 Tom.You
 spring.The
 it.Or
 houses.But,
 door.The
 in.He
 stairs.The
 right.The
 so.But
 sufferable.The
 dishonour.But
 emotion.She
 Esq.Advocate

Here the decision to split comes from the nature of the tokens on the left and right hand sides of the
period. In each case, the token is a known word or abbreviation in its own right.

On the other hand, common abbreviations should not be split. MorphAdorner keeps a list of these.
Examples:

 i.e.

10/01/13 MorphAdorner Page 133

 p.m.

It can be difficult to decide in some cases when a string is a legitimate abbreviation. For example, e.g_
is presumably a variant of e.g., but what about etc.s? When in doubt, MorphAdorner leaves a potential
abbreviation unsplit.

Roman numerals

Roman numerals in older texts exhibit considerably more orthographic variation than contemporary
usage allows. For example, the letter "j" is often used as a substitute for the letter "i" and "u" for "v".
Runs of letters may exceed the nominal length, e.g., "iiiii" may be used where "v" would normally
appear in current usage. Particularly in early modern texts, numerals may be preceded and/or followed
by a period. Examples:

xviiii 19
xxc 80
.XVI. 16

Some Roman numerals are followed by the letter "o" or "m" in a <sup> tag, e.g.,
DCCXXV^o. These are Latin or quasi-Latin inflection markers for a dative or accusative
form. These should be treated as a form of the word without the trailing marker characters, e.g.,
DCCXXV^o should be treated as DCCXXV.

MorphAdorner attempts to recognize many of these variants so that they can be assigned one of the
number part of speech tags.

10/01/13 MorphAdorner Page 134

Processing Text Creation Partnership Files

Introduction

This page describes the sequence of steps that begin with an SGML encoded Text Creation Partnership
file and transform it into a linguistically adorned file processed with Abbot and MorphAdorner.

The MorphAdorner v2.0 project seeks to capture the orthographic and morphological variety of Early
Modern printed books and make their texts available in formats that both articulate and erase
difference. Once Abbot has transformed the original SGML transcriptions into TEI XML,
MorphAdorner tokenizes each word occurrence in a text and maps its surface form to the combination
of a lemma and part of speech. A surface form like 'louyth' is mapped to the combination of the lemma
'love' and the POS tag 'vvz'. A 'lempos' or combination of lemma and POS tag can be used as the basis
for a standardized spelling. On this view, linguistic adornment provides a virtual erasure of difference,
which is useful for some purposes. Alternately, a lempos can also be used to look for the different
surface forms in which that particular lexical and morphological phenomenon is realized. On that view,
useful for other purposes, linguistic adornment provides a procedure for discovering and analyzing
difference.

It is a major goal of the Abbot and EEBO MorphAdorner collaboration to turn the TCP texts into the
foundation for a "Book of English," defined as:

• a large, growing, collaboratively curated, and public domain corpus of written English since its
earliest modern form

• with full bibliographical detail
• and light but consistent structural and linguistic annotation.

Texts in the adorned TCP corpus will exist in more than one format so as to facilitate different uses to
which they are likely to be put. In a first step, Abbot transforms the SGML source text into a TEI P5
XML format. Abbot, a software program designed by Brian Pytlik Zillig and Stephen Ramsay, can read
arbitrary XML files and convert them into other XML formats or a shared format. Abbot generates its
own set of conversion routines at runtime by reading an XML schema file and programmatically
effecting the desired transformations.

MorphAdorner can output its results in a variety of tabular or XML based formats. Our goal is to
provide output formats that can be successfully managed by scholars with moderate programming
skills. We also believe that scholars working with the files will discover many instances of
incompletely or incorrectly transcribed words and phrases. We want to make it easy to transmit
completions or corrections back to the source files. Thus various "bread crumbs" are built into the
design of MorphAdorner's routines and output formats. Linguistic adornment, coupled with appropriate
analytical tools, opens up many new forms of analysis. But you should not underestimate the
cumulative power of the quite humble task of discovering and fixing errors along the way.

The SGML source files

Origin and nature of the source files

The source files come from three Text Creation Partnership archives:

1. Early English Books Online files from Proquest, representing English books printed before

10/01/13 MorphAdorner Page 135

1700 (~45,000 files)
2. Eighteenth-Century Collection Online files from Cengage, representing books printed in the

18th century (~2,500 files)
3. The Evans collection of Early American imprints from Reddex, representing books printed in

America before 1800 (~ 5,000 files)

Bibliographical data for all these files are contained in the English Short Title Catalog.

The TCP files were transcribed by various commercial vendors through a double keyboarding method.
The transcriptions are based on digital scans of microfilms created in the mid- and late twentieth
century. The quality of the microfilms and digital scans is variable. So is the quality of the printed
original. Problems of transcription are overwhelmingly a function of what the transcriber was able to
see on the digital copy of a microfilm image of a printed page.

The texts were encoded in SGML using a DTD that is a modification of the P3 TEI Guidelines. The
files were encoded in ASCII and employ about 1,500 character entities to represent characters and
symbols not found in the lower ASCII set of characters.

Typographical changes

The printed sources of the TCP texts use a great variety of typefaces and mix them in various ways.
The TCP transcriptions ignore most of this, but use the <hi> tag to mark a change of type. An <hi>
element means that the text enclosed by it is set in a different type from the text that surrounds it. This
use of the <hi> tag does not provide any information about the type of the surrounding or enclosed text.
In practice, text enclosed by <hi> usually means text in italics surrounded by plain text, but often this is
not the case. You cannot reconstruct the "look and feel" of the printed page from the transcription
alone.

Idiosyncratic features of the source files

The SGML transcriptions use some project-specific tricks to capture various features of the source
files.

Line breaks

The TCP transcriptions do not record line breaks in the printed originals. They do, however record
"soft" hyphens where a word straddles two lines. The pipe character or vertical bar is used to mark such
line breaks as in "wind|ing".

Word breaks at line endings are not always marked with a hyphen in the printed originals. Transcribers
were asked to supply missing soft hyphens with a '+' sign. Sometimes they did, sometimes they didn't.
Unmarked word breaks, especially in marginal notes, are a very common feature of the TCP texts.

Superscripts and subscripts

Superscripted and subscripted alphanumerical characters are marked in the SGML transcription with a
single or double 'caret', e.g. "S^t^.", "2^^3".

Decorated initial characters

Initial decorated characters in the printed texts are marked in the SGML transcriptions with a preceding
underscore, as in "_T".

10/01/13 MorphAdorner Page 136

The interim P5 version of each file

In a first (and reversible) step we use Abbot to transform the P3 SGML version into an XML version
that parses under a slightly modified version of TEI P5. The goal here is not to create the perfect P5
version but to express the structure of the SGML files in P5-like XML with minimal changes. However,
Abbot is able to generate TEI XML P5 compatible versions of about 99% of the TCP SGML files.

Abbot closes unclosed tags as required by XML, maps the TEI tags to their XML "camel case"
versions, changes some tag attributes to their XML format, and replaces the temporary header with the
actual TEI header. The header is also converted to XML format. Abbot performs a few other changes as
noted below.

Conversion of character entities

Character entities with established utf-8 code points are converted to those code points. This includes
the long 's', by far the most common character entity.

Character entities with no corresponding utf-8 code points are preserved using the ad hoc devices of the
TCP XML version. Thus the character entity "&abque;", which marks a printer's abbreviation for 'que'
is represented by {que}, and curly braces are used in similear cases, wrapping the content of character
entities in curly braces.

Line-breaking hyphens

The pipe character used for line-breaking hyphens in the SGML texts is maintained in the XML. The
transcriber-supplied hyphen marked with '+' is replaced with the Unicode soft hyphen \u2011.

Superscripts and subscripts

The SGML notation for superscripts and subscripts is maintained in the intermediate P5 version. A
post-processing program replaces the SGML notation with XML tags.

Decorated initial characters

The SGML notation for decorated initial characters is maintained in the intermediate P5 version. A
post-processing program run after initial tokenization adds a "rend=" attribute to a token containing
decorated initial characters.

Gaps

The SGML notation for gaps is modified in the intermediate P5 version. Letter, word, span-based gap
extents are changed to a sequence of gap marker characters.

• The Unicode black circle ● (Unicode u25CF) replaces missing letters.
• The sequence of Unicode left-angle bracket, lozenge, right-angle bracket 〈 ◊ 〉

(\u3008\u25CA\u3009) replaces each missing word.
• The Unicode sequence left-angle bracket, horizontal ellipsis, right-angle bracket 〈 ? 〉

(\u3008\u2026\u3009) replaces a span of missing text.
• Simple foreign gaps are replaced by <seg xml:lang="unknown"> 〈◊ 〉 〈◊ 〉</seg> .

• Foreign gap lines (enclosed by <l> tags) are replaced by a sequence of seven 〈◊ 〉 missing
word markers enclosed in an <l xml:lang="unknown"> tag.

10/01/13 MorphAdorner Page 137

Post-processing the Abbot TEI files

The Abbotized TEI files are modified slightly before they are tokenized. The changes consists primarily
of converting the TCP style superscripts to XML tag format.

Converting ^d to elements.

Tokens which end in ^d where "d" is a single digit are converted to the token followed by a d. This
allows inserting the missing targets of these apparent note references at a later manual editing stage.
Some of these may actually be incorrectly transcribed British monetary markers where the digit "1"
was encoded instead of the letter "l".

Superscripts and subscripts

The ~44,000 EEBO texts include ~7,500 distinct superscript patterns with ~625,000 occurrences. All
but 113 patterns (with ~700 occurrences in ~90 files) can be satisfactorily presented with current utf-8
characters for superscripts. Subscripts are much less common and mostly numerical. Some subscripts
may be wrongly transcribed superscripts, e.g. "S^^r".

Although most superscripts and subscripts can be expressed literally through utf-8, it may be that for
most analytical purposes superscripts add a level of complexity without corresponding benefit. There is
much to be said for replacing them with plain characters wherever this can be done without creating
ambiguity. Getting rid of super and subscripts in those cases removes 98% or more of all instances.

yᵉ, yᵗ, and yᵘ

The spellings yᵉ, yᵗ, and yᵘ are best seen as single brevigraphs representing a whole word. The nature of
'y' in these case is determined by the following letter and represents the thorn or 'th' rather than 'y'.
Replacing these brevigraphs with 'the', 'that', and 'thou' probably makes more sense for a linguistically
adorned text than keeping the original spellings, which would require special filtering if a researcher
wanted to some analysis of the distribution of 'y' and 'i' spellings in 16th century texts.

Texts that have 'yᵉ', 'yᵗ', and 'yᵘ' are also likely to have the brevigraphs 'wᶜ' 'wᵗ' for 'with' and 'which'.
These are different from the 'y' cases in the sense that the first letter stands for itself. They do not
resolve comfortably to the plain spellings 'wc' or 'wt', and it seems preferable to replace them with the
words they stand for.

Common superscripts

The most common superscripts in later texts are strings like Mʳ, Mʳˢ, Dʳ, 2ᵈ, and the like, which are
unambigous and intelligible in their plain spellings Mr, Mrs, Dr, 2d.

Problematic superscripts

Some superscripts produce ambiguous or illegible words when written in plain type: 'Maᵗ ᵉ' and otherⁱ
abbreviations for 'Majesty' are the most common examples. In these case one can fall back on using
superscripts.

This fallback position cannot be used for cases where there are no appropriate utf-8 code points. There
is no lower case superscript 'q', and only a limited number of upper case characters . The problem is
rare: there are 150 types with 700 occurrences across 90 files. In these cases one could wrap the
superscripted characters in a <hi rend = "sup">.

10/01/13 MorphAdorner Page 138

For the sake of simplicity, it may be preferable to extend this practice to all cases where super- or
subscripts cannot be unambiguously represented as plain letters. An additional argument in favour of
going this is the problematical nature of displaying utf-8 superscripted characters. They come from
different Unicode ranges and do not form a coherent character family. In some type faces these
differences are leveled out. In others they are not. So superscript characters are a little like long 's': not
fully at home in the world of utf-8.

Converting superscripts to tag form

Because of the all the difficulties noted above, we decided to convert all superscript sequences given in
the ^c^d^e form to <hi rend="superscript">cde</hi> . The intermediate XML file contains some private
XML tag sequences to ensure proper spacing is maintained when tokenizing the superscript sequences,
and to allow proper recognition of printer's brevigraphs.

The tokenized version

Tokenization consists of mapping the boundaries of "words" and "sentences." From a theoretical
perspective, both "words" and "sentences" are highly problematic constructs. In practical terms, the
consistent application of heuristics will produce results you can work with in a dependable fashion. But
it is not an unambiguous matter of "carving nature at its joints" (Plato, Phaedrus 265e), and there are
plenty of edge cases.

About tokenization

A tokenized text is a nested structure in which the text consists of an ordered sequence of sentences,
and each sentence consists of an ordered sequence of words. In the XML representation of the text,
each word is contained by a <w> element, and punctuation is contained by a <pc> element. These <w>
and <pc> elements are the "leaf nodes" or lowest point of a hierarchical or "tree" structure that ascends
on a "path" through a series of nestings. A word in a play may sit at the bottom of the path
"TEI/text/div/div/sp/l/w." In the MorphAdorned text, sentences are not enclosed in <s> tags that are
stages in the Xpath, because sentences often cross the discursive boundaries established by elements,
especially in verse. Sentence boundaries are marked by a <pc unit="sentence"> attribute, either
attached to sentence-terminating punctuation, or an empty punctuation mark. Sentences can be
identified and retrieved as the sequence of words between two words or punctuation marks with <pc
unit ="sentence"> elements, except where text contained by certain "jump" tags such as <note>
intrudes. Sentences can still be extracted by either physically or virtually (programmatically) relocating
the text contained by the "jump" tags so that it no longer intrudes. MorphAdorner includes programs
which do this in extracting plain (untagged) versions of the adorned texts for use by other non-XML-
aware programs.

The xml:id and its complementary location id

MorphAdorner separates the act of tokenization from the act of linguistic adornment. A tokenized text
(or part of it) can be re-adorned without affecting the original tokenization. Each <w> and <pc>
element has an xml:id that is composed of a work ID and a running word counter that increments by 10
so that minor corrections can be accommodated without disrupting the sequence of ID's. For instance,
falsely joined words are a very common occurrence in the TCP text. The correction of such a
phenomenon (e.g. 'beginwith') involves the division of one token into two. If the original token count
goes like "10, 20", splitting "beginwith" into two words with the id's 10 and 15 does not affect other

10/01/13 MorphAdorner Page 139

IDs or their sequence.

Since the xml:ids are unique across the entire corpus they can be used to reference words in a document
from other XML files, databases, or custom document types.

In addition to its xml:id MorphAdorner can generate a location ID as the 'n' attribute of <w> and <pc>
elements. The purpose of this location ID is to facilitate alignment of the transcribed text with the page
image, a key requirement for many forms of work with retro-digitized documents. The location ID is
based on the page number of the digital scan, typically a double page. It is referenced in the SGML
source text as the value of the REF attribute in <PB> elements and appears as the value of the 'facs'
attribute in the P5 version. Page numbers of the printed source appear in the PB elements as the value
of N attributes, but not all printed pages have running page numbers. The location ID uses 'a' and 'b' to
distinguish the parts of a double-paged scan.

More precisely, the location ID takes the form facs-column-wordinpage where facs comes from the
attributes of the enclosing <pb> element, column is a letter starting with "a" and giving the column
number on the printer page, and wordinpage is the ordinal of the word within the page starting at 1
multiplied by the spacing. Subsequent location ID values have a wordinpage value incremented by the
given spacing value, which is 10 by default. Optionally the work ID (usually the base file name) can be
prepended to the location ID.

Here is a typical example of a location ID.

• 2-a-0050

This refers to the first column, fifth word in page image 2 for the current work.

These can be long identifiers, but theoretically only the page-base counter needs to be recorded as an 'n'
attribute. If page-based IDs are needed, they can be constructed on the fly or in a preprocessing step by
concatenating the work ID, the attribute values of the <pb> element and the page counter. It may also
be practical to construct an xml:id for each page by concatenating the workid with attribute values, as
in <pb xml:id="A05137-025-051" facs="25" n="51" />

Tokenization and the apostrophe

The TCP corpora use the apostrophe character (Ascii 39) to represent both the apostrophe character
proper and the single quote. The apostrophe symbol presents tricky problems for tokenization when it
appears before or after a word. It may be an opening or closing quotation mark or it may be part of a
contracted form like "'tis" or the possessive marker of a plural noun (sailors'). In the former cases it
should be replaced by opening or closing quotation marks and be identified as a separate token. In the
latter cases it should be counted as part of the word. It is possible to identify contracted forms with
considerable precision. Apostrophes sometimes appear as leading quotation marks at the beginning of
lines of verse.

Apostrophes are rare before the late seventeenth, but their disambiguation is a non-trivial problem in
texts from the late 17th and 18th century, especially play texts or texts that contain conversation or
informal correspondence. The relative frequency of apostrophes is a pretty good guide to texts of this
kind.

MorphAdorner uses a table of common occurrences of words beginning or ending with an apostrophe
to determine when to split or retain initial or trailing apostrophes from words. This is not completely
accurate but the most common occurrences of tokens with leading or trailing apostrophes are correctly

10/01/13 MorphAdorner Page 140

handled.

Tokenization and the mdash

The mdash (\u2014) is another symbol that complicates tokenization. It is very rare in 16th and early
17th century texts. Like the apostrophe, it belongs to the world of conversation and informal
correspondence. In the SGML texts the mdash character entity is used both as a punctuation mark and
as the symbol for "polite elision", e.g. "d-mn" or "B―p," etc. In this second use the mdash does not
mark a token boundary. You can with tolerable accuracy distinguish between these two uses through a
combination of algorithms and exception lists.

The SGML texts never use the horizontal bar (\u2015), which is visually indistinguishable from the
mdash. It is therefore possible to use the horizontal bar to mark polite elision. This removes existing
ambiguity without creating new forms of ambiguity. The replacement of the mdash with a horizontal
could be explicitly recorded in a change log, but this is not strictly necessary since in the
Morphadorned TCP texts the presence of \u2015 would by definition involve its replacement of
"—" in the SGML source files.

MorphAdorner attempts to distinguish the cases where the mdash is a word separator from those where
it should not be (as in polite elision). This cannot be done with high accuracy and some tokenization
errors remain.

Periods and abbreviations

MorphAdorner's sentence splitter uses the ICU4JBreakIterator class (from the International
Components for Unicode) along with a large set of heuristics for determining if two or more sentences
generated by ICU4JBreakIterator should be joined into one sentence. The heuristics include special
treatment of sentence-ending brackets (right parenthesis, right bracket, and right brace), abbreviations,
and interjections.

Abbreviations are a source of many tokenization errors. The TCP texts include a great many scientific,
theological, and other learned texts with thousands of obscure and rarely consistent abbreviations.

MorphAdorner includes an implementation of the Punkt algorithm which treats abbreviations as a
special form of collocation in which a character string habitually collocates with a final period.
Running the Punkt abbreviation detection algorithm over an entire corpus provides an initial, somewhat
conservative list of abbreviations. The abbreviations produced by Punkt have proved to be genuine
abbreviations, or at least strings to which the trailing period should remain attached (e.g., Roman
numerals). Punkt misses some abbreviations, so the initial list requires manual enhancement.

Many of the most commonly missed abbreviations are Biblical references. Punkt relies on relative
occurrences of tokens with and without trailing periods in order to determine which strings are
probable abbreviations. Especially in the earlier EEBO texts, an abbreviated Biblical book may appear
both with and without a trailing period - e.g., Corinthians may appear as both Cor and Cor.

It is important when tokenizing some kinds of texts to use different abbreviation lists for different parts
of the text. For example, we used different abbreviation lists when adorning the main part of drama
texts as opposed to the paratext (stage directions, speaker labels, etc.). MorphAdorner provides for
using different abbreviation lists based upon tag classes.

10/01/13 MorphAdorner Page 141

Roman numerals

Roman numerals in older English language texts exhibit considerably more orthographic variation than
contemporary usage allows. For example, the letters "j" and "u" are often substituted for "i" and "v".
Runs of letters may exceed the nominal length, e.g., "iiiii" may be used where "v" would normally
appear in current usage. Particularly in early modern texts, numerals may be preceded and/or followed
by a period, as in ".XVI." Some Roman numerals are often followed by superscripted letters, as in
"DCCXXV^o," where the Latin inflection markers need to be stripped in order to retrieve
the base form "DCCXXV". MorphAdorner attempts to recognize many of these variants.

It is sometimes difficult to distinguish algorithmically between different uses of strings such as "I."
which may be a Roman numeral, an initial, or a personal pronoun. "D." may be a Roman numeral or an
initial. Many of these problems occur around abbreviations in Biblical references. Disambiguating the
usage is important to achieve accurate part of speech tagging.

Back-tick characters

The back-tick character ` (Ascii 96) appears in a number of texts in different contexts. When it occurs
in the middle of a word, it acts as an alternative to the apostrophe. At the start of a line of verse the
back-tick (or two back-ticks in sequence) functions as a kind of opening quote with no corresponding
closing quote.

MorphAdorner treats two back-ticks as a single punctuation mark and splits them from the token to
which they are attached. A single back-tick followed by a capital letter (ignoring any intermediate
decorate tag such as <hi>) is treated as a separable token as well. This is correct more often than not.
Other instances of the back-tick are left attached to the token in which they appear. The back-tick is
regularized to an apostrophe when looking up spellings for purposes of lemmatization and part of
speech tagging.

Edge cases of 'words' in MorphAdorned texts

The TEI Guidelines define the content of a <w> element as a "grammatical (not necessarily
orthographic) word. While the blank space is the most common word boundary marker, a blank space
does not always separate one word from another, and there are lexical items that may be spelled as a
single word, two words, or hyphenated words. In the TCP texts there are three very common types of
such lexical items: reflexive pronouns, British monetary terms, and the words 'today' , 'tomorrow', and
'yesterday'.

MorphAdorner handles these cases using pattern matching during the tokenization phase. Occurrences
such as "my self" are treated as split words, and the individual parts are marked with the "part="
attribute of the <w> element to indicate this. Some special cases are handled. For example, in the
phrase "from day to day" the "to" and "day" are individual words, not parts of a split word.

Reflexive pronouns

The reflexive pronouns 'myself', 'herself' etc. occur as hyphenated or single word spellings from very
early on. The frequency of two-word spellings declines over time, but it is probably a mistake to use
orthographic difference as a sufficient reason for analyzing "my self" as the sequence of a possessive
pronoun and a noun, while 'myself' or 'my-self' are analyzed as reflexive pronouns. Mapping the
different spellings to the same description and treating them as single lexemes still let an investigator
pursue the question whether or how the decline of two-word spellings marks a change in the perception

10/01/13 MorphAdorner Page 142

of these "words" as single or composite.

British monetary terms

The most common way of referring to pounds, shillings, and pence is to use the Latin abreviations 'l' or
'lb', 's', and 'd' preceded by a numeral, typically Arabic. There may or may not be a space between the
numeral and the abbreviation. The abbreviation is often, but not always, marked by a period. The
abbreviation may also appear as a superscript (more common with 'l' or 'lb' than with 's' and 'd').

If you look for monetary terms across many texts in the corpus, it is probably helpful to treat these
different spellings as single monetary expressions and contain them in a single <w> element.

MorphAdorner attempts to locate occurrences of monetary patterns and encodes the variants which
contain blanks as split words. This allows recovery of the joined word as a single unit. Unfortunately a
fair number of occurrences of "l" (pound) following a number are encoded as the numeral "1" instead,
complicating the recognition of the monetary pattern.

Today, tomorrow, and yesterday

The spellings of 'today', 'tomorrow', and 'yesterday' are all over the map in Early Modern English. As
with reflexive pronouns, there is a trend away from two word spellings.

If 'to day' is treated as a single word, you need to watch out for the phrase 'from day to day,' where 'to
day' is clearly not one word. MorphAdorner has a list of such exceptional cases.

Changes in the tokenized file

The tokenized file as the basis for linguistic adornment

The tokenized file serves as the basis for linguistic adornment. Some features of the SGML source file
are very unlikely to be of further use in the adorned file and make working with it harder. They are
removed at this stage. Because each word in the tokenized file has a unique xml:id, it is easy to log all
the changes and "park" them in a change log file. Think of it as a form of tacit stand-off markup. It is
tacit in the sense that the tokenized file need not include an explicit pointer to a record in the change
log. But you can ask whether a given xml:id in the tokenized file has a corresponding record in the
change log.

The character of the change log

Just about anything archived in a change log could also be stored as elements or attributes in the XML
file. It is not expensive to store everything in one file, but bloated files are cumbersome to manipulate.
The cost of storing such files may be trivial, but the cost -- in terms of time or complexity -- of
manipulating them is not. You may want to look for some kind of "off-site" storage for features that
will be used rarely, if ever. It is critical that such features can be retrieved with precision and ease. It is
not critical that they are retrievable "on the fly."

The changes in question always involve the content of <w> and <pc> elements, and possibly associated
<c> elements which enclose word-separating whitespace.

MorphAdorner uses a simple XML format to contain a list of token-based changes. The format of this
file is as follows.

<ChangeLog>

10/01/13 MorphAdorner Page 143

 <changeTime>The time the change file was created.</changeTime>
 <changeDescription>A description of the changes.</changeDescription>
 <changes>
 <change>
 <id>xml:id of token to be changed.</id>
 <changeType>addition, modification, or deletion.</changeType>
 <fieldType>Type of field to change: text or attribute.</fieldType>
 <oldValue>Old field value.</oldValue>
 <newValue>New field value.</newValue>
 <siblingID>xml:id of sibling word for a word being added.</siblingID>
 <blankPrecedes>true if blank precedes the token, else false.</blankPrecedes>
 </change>
 ...
(more <change> entries)
 ...
 </changes>
</ChangeLog>

This simple XML formatted change file allows a file to be transformed to a corrected file using a utility
in the MorphAdorner suite. A file can be "untransformed" from the corrected version to the uncorrected
version using the same change file. A likely use case for the change log is an edition that wants to use
long 's' and other original spellings.

Here is an example of a change log entry which records the replacement of a long "s" with a plain "s".

<ChangeLog>
 <changeTime>2013-07-09 13:04:17.149 CDT</changeTime>
 <changeDescription>Changes from \tokenized\K000379.000.xml to \tokenized-no-word-
breaks\K000379.000.xml as determined by CompareAdornedFiles.</changeDescription>
 <changes>
 <change>
 <id>K000379_000-00080</id>
 <changeType>modification</changeType>
 <fieldType>text</fieldType>
 <oldValue>Addreſs'd</oldValue>
 <newValue>Address'd</newValue>
 <blankPrecedes>true</blankPrecedes>
 </change>
 ...
 </changes>
</ChangeLog>

Long 's'

The Unicode character for long 's' is replaced at this stage with plain 's'. For almost any conceivable
inquiry, the presence of two different forms of 's' complicates analysis without compensating
advantage. The word occurrences with long 's' are logged in the change log.

10/01/13 MorphAdorner Page 144

Soft hyphens

The soft hyphens of the SGML files are treated according to the following protocol:

1. If a spelling with a soft hyphen occurs elsewhere in the work or corpus as an unhyphenated
spelling, the soft hyphen is removed.

2. If a spelling with a soft hyphen occurs elsewhere with a hyphen, the soft hyphen is replaced
with a true hyphen.

3. If a spelling with a soft hyphen does not occur elsewhere either in a hyphenated or
unhyphenated form and both word parts can serve as independent words the soft hyphen is
replaced with a true hyphen.

4. If a spelling with a soft hyphen does not occur elsewhere either in a hyphenated or
unhyphenated form and the word parts are not independent words the soft hyphen is removed.

This replacement algorithm is implemented in a post-processing step after all the XML files are
tokenized. This is necessary to get the complete list of tokens for determining how often a word
appears with or without a real hyphen in the corpus.

Character entities without corresponding utf-8 code points

In Michigan's display-oriented XML versions of the SGML texts, character entities without
corresponding utf-8 points are represented through various workarounds, often enclosing these in curly
braces, as in "cum{que}" which represents the SGML transcription "cum&abque," which represents
"cum" plus a brevigraph for "que". Where the braces can be dropped without creating ambiguity or
illegibility -- which is true of most cases -- they should be dropped with an appropriate record in the
change log.

The horizontal bar as the marker of polite elision

As noted above, the SGML texts use the — character entity both as a punctuation mark and as a
symbol for polite elision. Polite elision in the MorphAdorned files should be marked by the horizontal
bar. We did not make this change in our initial conversion, but will consider doing it in the future.

Decorator characters

The underscore character identifying the initial character in a section or paragraph as decorated is
removed, but logged. A rend attribute with the value initialchardecorated is added to the word element.

hi tags inside words

In the SGML texts <HI> tags sometimes begin or end in the middle of a word, reflecting common
practices of Early Modern printing. In the possessive form of a name, the root is often italicized while
the case ending is in plain type: "<hi>Caesar</hi>'s death". If the surrounding text is in italics and the
name is emphasized through small caps, the SGML text is likely to represent that as "Caesar<hi>'s
death</hi>. If you tokenize the text, the <w> element straddles different tags, requiring complex
procedure of splitting and joining word parts.

One way of avoiding this problem in the first place is to move the information from the <HI> tag of the
SGML text "atomically" into the "rend" attribute of the <w> elements. That way all information about
formating is kept at the same and lowest level. If you want to ignore it you can, and it will never be in
the way because there is never any data below it whose treatment depends on what you do or do not do
with the formatting data.

10/01/13 MorphAdorner Page 145

Because most <hi> elements consist of a single word or two words, recording information about the
<hi> status of a <w> element "atomically" as the value of a rend attribute does not make the file
significantly more verbose. But it gives you an opportunity to use "hybrid" rend attributes to describe
words, parts of which are wrapped in <hi>tags.

Consider the most common case: <hi>Caesar</hi>'s death. This is tokenized as

<w xml:id ="someid1" rend="plain_apostrophe">Caesar's</w>

<w xnk:id = "someid2">death</w>

The attribute value is part of a controlled vocabulary of about two dozen cases, and it means that a
highlighted name is followed by a possessive in plain type. This preserves the formatting information
as it appears in the SGML texts. The change can be performed in a post-processing step either before
adorning the tokenized files, or after adornment is complete.

While we have not yet worked out all the details of hybrid hi tags, there are three basic cases with
various subdivisions:

1. Two parts of a word are in hi tags, but a middle connecting string is not (rare)
2. The first part of a word is inside a <hi> tag
3. The second part of a word is inside a <hi> tag

In addition, there are a small number of cases of nested hi tags that must be handled. In a future release
of MorphAdorner we expect to include a utility which replaces most hi tags in adorned or tokenized
texts with rend= attributes in the word elements.

Post-processing the tokenized file

The tokenized file is post-processed to mark words containing gaps and to replace soft huphens with
real hyphens or to remove them, as described above.

Adding type="unclear" to words containing gap characters

A type="unclear" attribute is added to any <w> element for a word or word part containing one or
more gap characters ● (Unicode u25CF).

Other token-based changes

A post-tokenization program replaces the long "s" with plain "s" and removes braces surrounding
brace-enclosed entities. A change can be created at this point to allow undoing these changes.

The process of linguistic adornment

Following the tokenization post-processing phase, each TEI XML file is lingistically adorned.

The pivotal position of the tokenized but not yet adorned file

The tokenized, but not yet adorned, interim P5 version of an SGML text has a pivotal position in the
workflow that leads from SGML texts to linguistically adorned files. This version does not shed any
data from the SGML text, but it identifies textual features that will be removed or changed, with all
changes logged in a manner that allows backtracking to the SGML file.

This interim file is linked to the linguistically adorned file with its enrichments and simplifications

10/01/13 MorphAdorner Page 146

through the stable system of xml:ids for each <w> element. There will be some changes in some
xml:ids as errors are discovered and fixed, and the maintenance of the link between the first tokenized
version and its adorned derivatives cannot be taken for granted. It needs attention, but it is a realistic
assumption that it can be maintained.

The separation of tokenization from adornment is a key feature of MorphAdorner 2.0. It allows for
work flows that are more granular and iterative, supporting cumulative improvements over time. Many
data errors or opportunities for data enrichment are discovered in the process of working with data.
While MorphAdorner does not by itself create a collaborative curation environment, its data structure
and basic work flows are useful building blocks for such an environment.

Linguistic adornment

MorphAdorner associates every word occurrence with a lemma and a part of speech tag. From this
combination, which we call the 'lempos' you can derive a standard spelling: if 'louyth' is identifed as an
instance of 'love_vvz' you can algorithmically derive 'loveth' or 'loves' as the desired standardized
spellings.

Errata divs

A number of TCP texts include div elements containing errata. The content of errata divs is generally
not amenable to linguistic adornment. We mark all the non-punctuation tokens in errata divs with the
NUPos "zz" part of speech for "unrecognizable."

Output formats

Native output

MorphAdorner produces a variety of outputs for adorned and unadorned texts as well as textual
derivatives.

MorphAdorner's basic or native output format stores all its adornments as attribute values of a <w> or
<pc> element. The principal nearly P5 compatible format uses the standard ana= and lemma= attributes
to store the parts of speech and lemmata, respectively, adds a non-standard reg= attribute to hold the
standardized spelling. Using an attribute is preferable to a choice element because the attribute leaves
the token sequence undisturbed, and the added attribute value can be stored in the standard
MorphAdorner change log.

Tabular output

For the purpose of reviewing and correcting data, MorphAdorner's tabular output (page 77) is very
helpful. This output contains the following (among other items) as columns in a table:

• The corpus-wide xml:id
• The spelling
• The lemma
• The POS tag
• The token before
• The token after
• Up to 80 characters before
• Up to 80 characters after

10/01/13 MorphAdorner Page 147

• The highest level differentiating element (front, body, back)
• The parent element of <w>

Here is an example, with the spelling put between the before and after contexts:

K133535.000-
052790

base j so a the twelve thousand
Hessians , sold in so

b●s
e

a manner by their avaricious
master to the

body p

The example shows one of the several million incompletely transcribed words. In this, as in many other
cases, the correct reading can be supplied by a literate reader with complete confidence and without
consulting the page image. It is relatively straightforward to populate a database with tabular output
containing only incomplete readings and adding a data entry capability that lets users log in and
provide corrections. See, for example, Annolex, which also supports easy consultation of the page
images in the many cases where that is necessary.

The main point here is that the MorphAdorner data structure provides a very robust foundation for
collaborative improvement of the EEBO texts over time and by many hands. Central to this task is the
maintenance of stable ID's that are the bread crumbs through which user-generate corrections can be
tracked back to their source texts.

TEI compliant output

The simplest out-of-the-box version of MorphAdorned and TEI P5 compliant texts follows a format
very close to the British National Corpus: the word token is the content of a <w> element. The lemma
and POS tag are respectively stored in 'lemma' and 'ana' attributes. In out-of-the-box P5 you cannot
store a standardized spelling in a 'reg' attribute. On the other hand, you can use a combination of
<choice> , <orig> , and <reg> elements to make each <w> element carry its part of a double stream of
original and standardized spellings, as in this adorned encoding of "wylle anone" from an early 16th
century text:

<w xml:id ="someid1" lemma="will" ana="#vmb">

<choice>
<orig>wylle</orig>
<reg>will</reg>
</choice>
</w>
<w xml:id ="someid2" lemma="anon" ana="#av">>
<choice>
<orig>anone</orig>
<reg>anon</reg>
</choice>
</w>

Alternately, you can customize P5 and restore a 'reg' attribute that would let you encode the same
phenomena in a manner that programmers -- and in particular programmers with limited skills -- are
likely to find more intuitive and economical:

<w xml:id ="someid1" lemma="will" reg= "will" ana="#vmb">wylle</w>
<w xml:id ="someid2" lemma="anon" reg ="anon" ana="#av">anone</w>

10/01/13 MorphAdorner Page 148

http://annolex.at.northwestern.edu/about/

Either way the linguistic adornment of consistently encoded TEI texts provides users with rich
opportunities for combining lexical and morphological features with broader discursive features in their
analysis of texts. MorphAdorner can generate either style of output for regular spellings.

Other output formats

MorphAdorner can also generate other types of output from adorned files, including various types of
plain text, summary tabular files, and input for the Corpus Workbench, Sketch Engine, and BlackLab
search engine.

NUPos interpGrp

The TEI P5 guidelines suggest including an interpGrp section to define the part of speech tags
referenced by ana= attributes in word elements. Here is part of the interpGrp for the NUPOS part of
speech tag set used by MorphAdorner.

<interpGrp type="NUPOS">
 <interp xml:id="a-acp">acp word as adverb</interp>
 <interp xml:id="av">adverb</interp>
 <interp xml:id="av-an">noun-adverb as adverb</interp>
 <interp xml:id="av-c">comparative adverb</interp>
 <interp xml:id="av-d">determiner/adverb as adverb</interp>
 <interp xml:id="av-dc">comparative determiner/adverb as adverb</interp>
 <interp xml:id="av-ds">superlative determiner as adverb</interp>
 <interp xml:id="av-dx">negative determiner as adverb</interp>
 <interp xml:id="av-j">adjective as adverb</interp>
 ...
 <interp xml:id="zz">unknown or unparsable token</interp>
</interpGrp>

We pondered how best to include this interpGrp in the adorned output files produced by
MorphAdorner. A prolix approach adds the interpGrp to every adorned file in full. A sparer approach
uses the xinclude facility to reference the same external copy from each adorned file. The question
remained, where to put the full definition or include statement?

We considered placing the definition in the TEI header, or someplace in the body of the text. We finally
decided to wait until the forthcoming TEI standoff tag becomes officially available. The standoff tag
acts as a container for storing various kinds of standoff markup. This separates the standoff items from
the actual text of the document. Hence the currently generated adorned output files do not include the
NUPOS interpGrp.

Placement of notes

In the printed source texts, <note> elements never interrupt the reading order, because all the notes are
either placed in the margin or at the bottom of the page. In the SGML texts, the <note> elements were
encoded inline, because that was the most convenient thing to do.

For the purpose of maintaining continuity with the SGML source, the interim tokenized text needs to
preserve their current position. The final output, however, can employ a variety of stand-off options and
keep notes in special divs, whether at the end of each div or in a <back> element of each <text>
element.

10/01/13 MorphAdorner Page 149

Consultation with several linguists suggests that there is some consensus about keeping notes out of the
flow of the text and that, as Bryan Jurish put it in an email, there is much to be said for "the underlying
intuition that a 'stupid' extraction of the raw text from an XML document (i.e. the concatenation all text
nodes in document order) ought to return a linguistically plausible serial representation of the data."

MorphAdorner internally moves the content of <note> elements and other jump tags out of the way
during adornment. This allows for proper part of speech tagging within the main text with the intrusive
jump tag text getting in way of a proper reading order for words.

MorphAdorner also provides utilities for extracting the plain text of words or sentences that is
cognizant of proper reading order as well. This allows for extracting random sentences, or generating
input to programs such as Mallet to perform topic extraction.

MorphAdorner also contains a program which can reorganize adorned files so that notes are moved to a
<div type="notes"> in the <back> section at the end of the main <div> in which they occur. Original
instances of the notes are replaced by a <ptr> element which points to the location of the relocated
<note> element. An example of such a <ptr> element is:

<ptr type="note" target="nd1e8415" xml:id="rd1e8415" n="1"/>

The target= attribute gives the xml:id of the transplanted <note>. The xml:id provides the back link
needed to restore the original note position give the transplanted note.

Searching the corpora

Given a richly adorned corpus, the ability to search both the text and the adornments comprise an
important basis for any research using that corpus. MorphAdorner itself does not provide such a search
facility. Instead the assumption is that the adorned texts, or a suitable transformation of them, will
comprise the input to one or more corpus search engines.

As noted in previous sections, MorphAdorner can transform the base adorned files to the input format
required by some corpus search engines such as the Corpus WorkBench and the Sketch engine. The
Philogic v4.0 search engine can index and search MorphAdorned XML files directly. Adorned files can
also be used as input to generic XQUERY search engines such as BaseX and eXist. In addition, during
the course of this project, we discovered the availability of a new corpus search engine called
BlackLab, under development by the Institute of Dutch Lexicology (INL). An experimental search site
built using BlackLab hosts adorned versions of Shakespeare's dramas and the TCP ECCO texts at
http://devadorner.northwestern.edu/corpussearch/ .

BlackLab is a corpus retrieval engine built on top of the popular open-source search library Apache
Lucene. According to its authors, BlackLab "offers fast, complex searches with accurate hit
highlighting on large, tagged and annotated, bodies of text." BlackLab extends Lucene with the ability
to use a variant of the Corpus Workbench search syntax to search adorned corpora for attributes such as
lemma, part of speech, main versus paratext, and most any other token-level attribute one can imagine.

We heavily modified and enhanced a basic TEI corpus indexer provided by the BlackLab development
group. We used this to create searchable versions of the MorphAdorner generated adorned files for all
of the project corpora. The speed of both the indexing process and the searches is impressive. The
BlackLab searches have allowed us to locate and correct a variety of adornment problems that would
otherwise have been more difficult to find.

10/01/13 MorphAdorner Page 150

http://devadorner.northwestern.edu/corpussearch/

MorphAdorner Server

The MorphAdorner Server wraps adornment processes as web services using Rest-like interfaces. The
web services can be accessed from any programming language and system which knows how to send
and receive HTTP requests, or even a plain web browser. The services are automatically parallelized
because of the way HTTP servers work. Many clients can access the same web service simultaneously.
MorphAdorner Server uses the Restlet library to implement the web services.

Some of the TEI-based services currently provided by the MorphAdorner Server include:

• Convert an adorned TEI XML to tabular format.
• Adorn a TEI XML file.
• Apply a change log to an adorned TEI XML file.
• Compare two versions of an adorned TEI XML file and generate an XML format change log.
• Extract text from a TEI XML file.
• Extract sentences from adorned TEI XML file.
• Move notes to a special div in a TEI XML file.
• Tokenize a TEI XML file.
• Unadorn a TEI XML file.

Future directions

We hope the initial work we've done on the TCP texts will continue in subsequent projects. Aside from
improving the tokenization and morphological adornment, we expect to merge meta-data from the
electronic version of the English Short Title Catalog into the metadata sections of the TEI XML files,
perhaps into the <keywords> sections of the TEI header. This will improve the ability of researchers to
search for and create corpus subsets of interest as well as allow comparison with other corpora.

We also hope to be able to identify named entities of various types, including personal names and
places. This is more difficult in literary texts than in other discursive writing because many of the
names are entirely fictional. Many TCP texts contain Biblical references and references to classical
authors. It would be useful to mark these using the xml:id of the tokens comprising the entities, perhaps
saving them in stand-off form in auxiliary documents.

A longer term goal is the compilation of a comprehensive lexicon of spellings and variants with date
information from the TCP texts. The lexicon would include frequencies of occurrence across centuries,
broken down by genre and part of speech, as well as lemmata by parts of speech. Such a lexicon would
allow morphological adornment processes to use a standardized lexicon ID for each word in a text.

10/01/13 MorphAdorner Page 151

Part Six: Programming Examples

Example One: Adorning a string With Parts Of Speech

Adorning a string With Parts Of Speech

Suppose you have a string of text containing one or more sentences. How do you use MorphAdorner to
assign part of speech tags to each word in the text?

Creating a default tokenizer and sentence splitter

First you need to break up the text into sentences and words. In MorphAdorner you use a sentence
splitter and a word tokenizer to perform these tasks. You can use MorphAdorner's default sentence
splitter and default word tokenizer by creating an instance of each as follows.

 WordTokenizer wordTokenizer = new DefaultWordTokenizer();

 SentenceSplitter sentenceSplitter =
 new DefaultSentenceSplitter();

Use the sentence splitter and word tokenizer to split the text into a java.util.List of sentences, each of
which is in turn a java.util.List of word and punctuation tokens. (Whitespace is not captured as part of
the token list.) The text to split is stored in textToAdorn.

 List<List<String>> sentences =
 sentenceSplitter.extractSentences(
 textToAdorn , wordTokenizer);

Note that the sentence splitter requires the word tokenizer as a parameter.

Getting the parts of speech

Next, create an instance of MorphAdorner's default part of speech tagger. The default tagger is a
trigram tagger using a hidden Markov model and a beam search variant of the Viterbi algorithm. The
default lexicon is a combination of an extensive English name list and words found in 19th century
British fiction. The default part of speech tag set is the NUPOS tag set.

 PartOfSpeechTagger partOfSpeechTagger =
 new DefaultPartOfSpeechTagger();

Now invoke the part of speech tagger to assign parts of speech to each word in the extracted sentences.

 List<List<AdornedWord>> taggedSentences =
 partOfSpeechTagger.tagSentences(sentences);

Displaying the results

The part of speech tagger returns a java.util.List of java.util.list entries. Each secondary java.util.List is
a list of AdornedWord entries. Only the spelling and part of speech fields in each AdornedWord entry
are guaranteed to be defined upon return from the part of speech tagger. You can display the results by
extracting and printing the spelling and associated part of speech for each word.

10/01/13 MorphAdorner Page 152

 for (int i = 0 ; i < sentences.size() ; i++)
 {
 // Get the next adorned sentence.
 // This contains a list of adorned
 // words. Only the spellings
 // and part of speech tags are
 // guaranteed to be defined.

 List<AdornedWord> sentence = taggedSentences.get(i);

 System.out.println
 (
 "---------- Sentence " + (i + 1) + "----------"
);

 // Print out the spelling and part(s)
 // of speech for each word in the
 // sentence. Punctuation is treated
 // as a word too.

 for (int j = 0 ; j < sentence.size() ; j++)
 {
 AdornedWord adornedWord = sentence.get(j);

 System.out.println
 (
 StringUtils.rpad((j + 1) + "" , 3) + ": " +
 StringUtils.rpad(adornedWord.getSpelling() , 20) +
 adornedWord.getPartsOfSpeech()
);
 }
 }
 }

Putting it altogether

You can peruse the Java source code for PosTagString below which puts all the above code together in
a runnable sample program. You will also find the source code in the
src/edu/northwestern/at/morphadorner/examples/ directory in the MorphAdorner
release.

package edu.northwestern.at.morphadorner.examples;

/* Please see the license information at the end of this file. */

import java.util.*;

import edu.northwestern.at.utils.*;
import edu.northwestern.at.utils.corpuslinguistics.adornedword.*;
import edu.northwestern.at.utils.corpuslinguistics.postagger.*;
import edu.northwestern.at.utils.corpuslinguistics.sentencesplitter.*;
import edu.northwestern.at.utils.corpuslinguistics.tokenizer.*;

/** PosTagString: Adorn a string with parts of speech.

10/01/13 MorphAdorner Page 153

 *
 * <p>
 * Usage:
 * </p>
 *
 * <p>
 * <code>
 * java -Xmx256m edu.northwestern.at.morphadorner.example.PosTagString "Text to
adorn."
 * </code>
 * </p>
 *
 * <p>
 * where "Text to adorn." specifies one or more sentences of text to
 * adorn with part of speech tags. The default tokenizer,
 * sentence splitter, lexicons, and part of speech tagger are used.
 * </p>
 *
 * <p>
 * Example:
 * </p>
 *
 * <p>
 * <code>
 * java -Xmx256m edu.northwestern.at.morphadorner.example.PosTagString "Mary had
a little lamb. Its fleece was white as snow."
 * </code>
 * </p>
 */

public class PosTagString
{
 /** Main program.
 *
 * @param args Program parameters.
 */

 public static void main(String[] args)
 {
 try
 {
 adornText(args);
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 }

 /** Adorn text specified as a program parameter.
 *
 * @param args The program parameters.
 *
 * <p>
 * args[0] contains the text to adorn. The text may contain
 * one or more sentences with punctuation.
 * </p>

10/01/13 MorphAdorner Page 154

 */

 public static void adornText(String[] args)
 throws Exception
 {
 // Get text to adorn. Report error
 // and quit if none.

 if (args.length < 1)
 {
 System.out.println("No text to adorn.");
 System.exit(1);
 }

 String textToAdorn = args[0];

 // Get default part of speech tagger.

 PartOfSpeechTagger partOfSpeechTagger =
 new DefaultPartOfSpeechTagger();

 // Get default word tokenizer.

 WordTokenizer wordTokenizer = new DefaultWordTokenizer();

 // Get default sentence splitter.

 SentenceSplitter sentenceSplitter =
 new DefaultSentenceSplitter();

 // Get the part of speech
 // guesser from the part of
 // speech tagger. Set this into
 // sentence splitter to improve
 // sentence boundary recognition.

 sentenceSplitter.setPartOfSpeechGuesser
 (
 partOfSpeechTagger.getPartOfSpeechGuesser()
);
 // Split text into sentences
 // and words. Here "sentences"
 // contains a list of sentences.
 // Each sentence is itself a list of words.

 List<List<String>> sentences =
 sentenceSplitter.extractSentences(
 textToAdorn , wordTokenizer);

 // Assign part of speech tags to
 // each word in each sentence.
 // Here "taggedSentences" contains
 // a list of List<AdornedWord> entries,
 // one for each sentence.

 List<List<AdornedWord>> taggedSentences =
 partOfSpeechTagger.tagSentences(sentences);

10/01/13 MorphAdorner Page 155

 // Display tagged words.

 for (int i = 0 ; i < sentences.size() ; i++)
 {
 // Get the next adorned sentence.
 // This contains a list of adorned
 // words. Only the spellings
 // and part of speech tags are
 // guaranteed to be defined.

 List<AdornedWord> sentence = taggedSentences.get(i);

 System.out.println
 (
 "---------- Sentence " + (i + 1) + "----------"
);

 // Print out the spelling and part(s)
 // of speech for each word in the
 // sentence. Punctuation is treated
 // as a word too.

 for (int j = 0 ; j < sentence.size() ; j++)
 {
 AdornedWord adornedWord = sentence.get(j);

 System.out.println
 (
 StringUtils.rpad((j + 1) + "" , 3) + ": " +
 StringUtils.rpad(adornedWord.getSpelling() , 20) +
 adornedWord.getPartsOfSpeech()
);
 }
 }
 }
}

/*
Copyright (c) 2008, 2013 by Northwestern University.
All rights reserved.

Developed by:
 Academic and Research Technologies
 Northwestern University
 http://www.it.northwestern.edu/about/departments/at/

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal with the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

 * Redistributions of source code must retain the above copyright

10/01/13 MorphAdorner Page 156

 notice, this list of conditions and the following disclaimers.

 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimers in the documentation and/or other materials provided
 with the distribution.

 * Neither the names of Academic and Research Technologies,
 Northwestern University, nor the names of its contributors may be
 used to endorse or promote products derived from this Software
 without specific prior written permission.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE.
*/

10/01/13 MorphAdorner Page 157

Example Two: Adorning a string with lemmata and standard
spellings

Let's extend the example of adorning a string with parts of speech to add lemma forms and
standardized spellings for each word in the string.

Creating a default lemmatizer and spelling standardizer

We will use the default English lemmatizer and the default spelling standardizer.

 // Get the default English
 // lemmatizer.

 Lemmatizer lemmatizer = new DefaultLemmatizer();

 // Get the default spelling
 // standardizer.

 SpellingStandardizer standardizer =
 new DefaultSpellingStandardizer();

Adding lemmata and standardized spellings to the output

The process of adding parts of the speech is the same as in PosTagString. We call two new auxiliary
methods to determine the lemmata and standard spelling for each part-of-speech tagged spelling.

 for (int j = 0 ; j < sentence.size() ; j++)
 {
 AdornedWord adornedWord = sentence.get(j);

 // Get the standard spelling
 // given the original spelling
 // and part of speech.

 setStandardSpelling
 (
 adornedWord ,
 standardizer ,
 partOfSpeechTags
);
 // Set the lemma.

 setLemma
 (
 adornedWord ,
 wordLexicon ,
 lemmatizer ,
 partOfSpeechTags ,
 spellingTokenizer
);

 // Display the adornments.

 System.out.println

10/01/13 MorphAdorner Page 158

 (
 StringUtils.rpad((j + 1) + "" , 3) + ": " +
 StringUtils.rpad(adornedWord.getSpelling() , 20) +
 StringUtils.rpad(
 adornedWord.getPartsOfSpeech() , 8) +
 StringUtils.rpad(
 adornedWord.getStandardSpelling() , 20) +
 adornedWord.getLemmata()
);
 }

Getting the lemma form

We start by setting the lemma form to the spelling. If the spelling belongs to a word class which should
not be further lemmatized, we do nothing further. We test for this by checking if the lemmatization
class for the spelling's associated part of speech tag is "none" or if the language specific lemmatizer
indicates that tag should not be lemmatized.

If the spelling should be lemmatized, we next check if there are multiple parts of speech in the spelling.
If so, we try to find the lemma form for each part separately, and join them into a compound lemma,
separating the individual pieces with the lemma form separator character. If the spelling has only a
single part of speech, we find the lemma form that best fits the combination of spelling and part of
speech.

 /** Get lemma for a word.
 *
 * @param adornedWord The adorned word.
 * @param lexicon The word lexicon.
 * @param lemmatizer The lemmatizer.
 * @param partOfSpeechTags The part of speech tags.
 * @param spellingTokenizer Tokenizer for spelling.
 *
 * <p>
 * On output, sets the lemma field of the adorned word
 * We look in the word lexicon first for the lemma.
 * If the lexicon does not contain the lemma, we
 * use the lemmatizer.
 * </p>
 */

 public static void setLemma
 (
 AdornedWord adornedWord ,
 Lexicon lexicon ,
 Lemmatizer lemmatizer ,
 PartOfSpeechTags partOfSpeechTags ,
 WordTokenizer spellingTokenizer
)
 {
 String spelling = adornedWord.getSpelling();
 String partOfSpeech = adornedWord.getPartsOfSpeech();
 String lemmata = spelling;

 // Get lemmatization word class
 // for part of speech.

10/01/13 MorphAdorner Page 159

 String lemmaClass =
 partOfSpeechTags.getLemmaWordClass(partOfSpeech);

 // Do not lemmatize words which
 // should not be lemmatized,
 // including proper names.

 if (lemmatizer.cantLemmatize(spelling) ||
 lemmaClass.equals("none")
)
 {
 }
 else
 {
 // Try compound word exceptions
 // list first.

 lemmata = lemmatizer.lemmatize(spelling , "compound");

 // If lemma not found, keep trying.

 if (lemmata.equals(spelling))
 {
 // Extract individual word parts.
 // May be more than one for a
 // contraction.

 List wordList =
 spellingTokenizer.extractWords(spelling);

 // If just one word part,
 // get its lemma.

 if (!partOfSpeechTags.isCompoundTag(partOfSpeech) ||
 (wordList.size() == 1)
)
 {
 if (lemmaClass.length() == 0)
 {
 lemmata = lemmatizer.lemmatize(spelling);
 }
 else
 {
 lemmata =
 lemmatizer.lemmatize(spelling , lemmaClass);
 }
 }
 // More than one word part.
 // Get lemma for each part and
 // concatenate them with the
 // lemma separator to form a
 // compound lemma.
 else
 {
 lemmata = "";
 String lemmaPiece = "";
 String[] posTags =

10/01/13 MorphAdorner Page 160

 partOfSpeechTags.splitTag(partOfSpeech);

 if (posTags.length == wordList.size())
 {
 for (int i = 0 ; i < wordList.size() ; i++)
 {
 String wordPiece = (String)wordList.get(i);

 if (i > 0)
 {
 lemmata = lemmata + lemmaSeparator;
 }

 lemmaClass =
 partOfSpeechTags.getLemmaWordClass
 (
 posTags[i]
);

 lemmaPiece =
 lemmatizer.lemmatize
 (
 wordPiece ,
 lemmaClass
);

 lemmata = lemmata + lemmaPiece;
 }
 }
 }
 }
 }

 adornedWord.setLemmata(lemmata);
 }
}

Getting the standardized spelling

We start by setting the standardized form to the original spelling. If the spelling belongs to a word class
which should not be standardized, we do nothing further. This includes spellings that are tagged as
numbers, proper nouns, and foreign words.

If the spelling can be standardized, we ask the spelling standardizer to give us the best standardized
form it can. We try to match the case of the original spelling in the standardized form. Alternatively we
could always set the standardized form to a lower case version, except possibly for proper nouns and
adjectives, and the pronoun "I".

 /** Get standard spelling for a word.
 *
 * @param adornedWord The adorned word.
 * @param standardizer The spelling standardizer.
 * @param partOfSpeechTags The part of speech tags.
 *
 * <p>

10/01/13 MorphAdorner Page 161

 * On output, sets the standard spelling field of the adorned word
 * </p>
 */

 public static void setStandardSpelling
 (
 AdornedWord adornedWord ,
 SpellingStandardizer standardizer ,
 PartOfSpeechTags partOfSpeechTags
)
 {
 // Get the spelling.

 String spelling = adornedWord.getSpelling();
 String standardSpelling = spelling;
 String partOfSpeech = adornedWord.getPartsOfSpeech();

 // Leave proper nouns alone.

 if (partOfSpeechTags.isProperNounTag(partOfSpeech))
 {
 }
 // Leave nouns with internal
 // capitals alone.

 else if (partOfSpeechTags.isNounTag(partOfSpeech) &&
 CharUtils.hasInternalCaps(spelling))
 {
 }
 // Leave foreign words alone.

 else if (partOfSpeechTags.isForeignWordTag(partOfSpeech))
 {
 }
 // Leave numbers alone.

 else if (partOfSpeechTags.isNumberTag(partOfSpeech))
 {
 }
 // Anything else -- call the
 // standardizer on the spelling
 // to get the standard spelling.
 else
 {
 standardSpelling =
 standardizer.standardizeSpelling
 (
 adornedWord.getSpelling() ,
 partOfSpeechTags.getMajorWordClass
 (
 adornedWord.getPartsOfSpeech()
)
);

 // If the standard spelling
 // is the same as the original
 // spelling except for case,

10/01/13 MorphAdorner Page 162

 // use the original spelling.

 if (standardSpelling.equalsIgnoreCase(spelling))
 {
 standardSpelling = spelling;
 }
 }
 // Set the standard spelling.

 adornedWord.setStandardSpelling(standardSpelling);
 }

Putting it altogether

You can peruse the Java source code for AdornAString below which puts all the above code together
in a runnable sample program. You will also find the source code in the
src/edu/northwestern/at/morphadorner/examples/ directory in the MorphAdorner
release.

package edu.northwestern.at.morphadorner.examples;

/* Please see the license information at the end of this file. */

import java.util.*;

import edu.northwestern.at.utils.*;
import edu.northwestern.at.utils.corpuslinguistics.adornedword.*;
import edu.northwestern.at.utils.corpuslinguistics.lemmatizer.*;
import edu.northwestern.at.utils.corpuslinguistics.lexicon.*;
import edu.northwestern.at.utils.corpuslinguistics.partsofspeech.*;
import edu.northwestern.at.utils.corpuslinguistics.postagger.*;
import edu.northwestern.at.utils.corpuslinguistics.sentencesplitter.*;
import edu.northwestern.at.utils.corpuslinguistics.spellingstandardizer.*;
import edu.northwestern.at.utils.corpuslinguistics.tokenizer.*;

/** AdornAString: Adorn a string with parts of speech, lemmata, and
 * standard spellings.
 *
 * <p>
 * Usage:
 * </p>
 *
 * <p>
 * <code>
 * java -Xmx256m edu.northwestern.at.morphadorner.example.AdornAString "Text to
adorn."
 * </code>
 * </p>
 *
 * <p>
 * where "Text to adorn." specifies one or more sentences of text to
 * adorn with part of speech tags, lemmata, and standard spellings.
 * The default tokenizer, sentence splitter, lexicons, part of speech tagger,
 * lemmatizer, and spelling standardizer are used.

10/01/13 MorphAdorner Page 163

 * </p>
 *
 * <p>
 * Example:
 * </p>
 *
 * <p>
 * <code>
 * java -Xmx256m edu.northwestern.at.morphadorner.example.AdornAString "Mary had
a little lamb. Its fleece was white as snow."
 * </code>
 * </p>
 */

public class AdornAString
{
 /** Lemma separator character, */

 public static String lemmaSeparator = "|";

 /** Main program.
 *
 * @param args Program parameters.
 */

 public static void main(String[] args)
 {
 try
 {
 adornText(args);
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 }

 /** Adorn text specified as a program parameter.
 *
 * @param args The program parameters.
 *
 * <p>
 * args[0] contains the text to adorn. The text may contain
 * one or more sentences with punctuation.
 * </p>
 */

 public static void adornText(String[] args)
 throws Exception
 {
 // Get text to adorn. Report error
 // and quit if none.

 if (args.length < 1)
 {
 System.out.println("No text to adorn.");
 System.exit(1);

10/01/13 MorphAdorner Page 164

 }

 String textToAdorn = args[0];

 // Get default part of speech tagger.

 PartOfSpeechTagger partOfSpeechTagger =
 new DefaultPartOfSpeechTagger();

 // Get default word lexicon from
 // part of speech tagger.

 Lexicon wordLexicon = partOfSpeechTagger.getLexicon();

 // Get the part of speech tags from
 // the word lexicon.

 PartOfSpeechTags partOfSpeechTags =
 wordLexicon.getPartOfSpeechTags();

 // Get default word tokenizer.

 WordTokenizer wordTokenizer = new DefaultWordTokenizer();

 // Get spelling tokenizer.

 WordTokenizer spellingTokenizer =
 new PennTreebankTokenizer();

 // Get default sentence splitter.

 SentenceSplitter sentenceSplitter =
 new DefaultSentenceSplitter();

 // Get the part of speech
 // guesser from the part of
 // speech tagger. Set this into
 // sentence splitter to improve
 // sentence boundary recognition.

 sentenceSplitter.setPartOfSpeechGuesser
 (
 partOfSpeechTagger.getPartOfSpeechGuesser()
);
 // Get the default English
 // lemmatizer.

 Lemmatizer lemmatizer = new DefaultLemmatizer();

 // Get the default spelling
 // standardizer.

 SpellingStandardizer standardizer =
 new DefaultSpellingStandardizer();

 // Split text into sentences
 // and words. Here "sentences"

10/01/13 MorphAdorner Page 165

 // contains a list of sentences.
 // Each sentence is itself a list of words.

 List<List<String>> sentences =
 sentenceSplitter.extractSentences(
 textToAdorn , wordTokenizer);

 // Assign part of speech tags to
 // each word in each sentence.
 // Here "taggedSentences" contains
 // a list of List<AdornedWord> entries,
 // one for each sentence.

 List<List<AdornedWord>> taggedSentences =
 partOfSpeechTagger.tagSentences(sentences);

 // Loop over sentences and
 // display adornments.

 for (int i = 0 ; i < sentences.size() ; i++)
 {
 // Get the next adorned sentence.
 // This contains a list of adorned
 // words. Only the spellings
 // and part of speech tags are
 // guaranteed to be defined at
 // this point.

 List<AdornedWord> sentence = taggedSentences.get(i);

 System.out.println
 (
 StringUtils.dupl("-" , 30) +
 " " + (i + 1) + " " +
 StringUtils.dupl("-" , 30)
);
 // Print out the spelling and part(s)
 // of speech for each word in the
 // sentence. Punctuation is treated
 // as a word too.

 for (int j = 0 ; j < sentence.size() ; j++)
 {
 AdornedWord adornedWord = sentence.get(j);

 // Get the standard spelling
 // given the original spelling
 // and part of speech.

 setStandardSpelling
 (
 adornedWord ,
 standardizer ,
 partOfSpeechTags
);
 // Set the lemma.

10/01/13 MorphAdorner Page 166

 setLemma
 (
 adornedWord ,
 wordLexicon ,
 lemmatizer ,
 partOfSpeechTags ,
 spellingTokenizer
);

 // Display the adornments.

 System.out.println
 (
 StringUtils.rpad((j + 1) + "" , 3) + ": " +
 StringUtils.rpad(adornedWord.getSpelling() , 20) +
 StringUtils.rpad(
 adornedWord.getPartsOfSpeech() , 8) +
 StringUtils.rpad(
 adornedWord.getStandardSpelling() , 20) +
 adornedWord.getLemmata()
);
 }
 }
 }

 /** Get standard spelling for a word.
 *
 * @param adornedWord The adorned word.
 * @param standardizer The spelling standardizer.
 * @param partOfSpeechTags The part of speech tags.
 *
 * <p>
 * On output, sets the standard spelling field of the adorned word
 * </p>
 */

 public static void setStandardSpelling
 (
 AdornedWord adornedWord ,
 SpellingStandardizer standardizer ,
 PartOfSpeechTags partOfSpeechTags
)
 {
 // Get the spelling.

 String spelling = adornedWord.getSpelling();
 String standardSpelling = spelling;
 String partOfSpeech = adornedWord.getPartsOfSpeech();

 // Leave proper nouns alone.

 if (partOfSpeechTags.isProperNounTag(partOfSpeech))
 {
 }
 // Leave nouns with internal
 // capitals alone.

10/01/13 MorphAdorner Page 167

 else if (partOfSpeechTags.isNounTag(partOfSpeech) &&
 CharUtils.hasInternalCaps(spelling))
 {
 }
 // Leave foreign words alone.

 else if (partOfSpeechTags.isForeignWordTag(partOfSpeech))
 {
 }
 // Leave numbers alone.

 else if (partOfSpeechTags.isNumberTag(partOfSpeech))
 {
 }
 // Anything else -- call the
 // standardizer on the spelling
 // to get the standard spelling.
 else
 {
 standardSpelling =
 standardizer.standardizeSpelling
 (
 adornedWord.getSpelling() ,
 partOfSpeechTags.getMajorWordClass
 (
 adornedWord.getPartsOfSpeech()
)
);

 // If the standard spelling
 // is the same as the original
 // spelling except for case,
 // use the original spelling.

 if (standardSpelling.equalsIgnoreCase(spelling))
 {
 standardSpelling = spelling;
 }
 }
 // Set the standard spelling.

 adornedWord.setStandardSpelling(standardSpelling);
 }

 /** Get lemma for a word.
 *
 * @param adornedWord The adorned word.
 * @param lexicon The word lexicon.
 * @param lemmatizer The lemmatizer.
 * @param partOfSpeechTags The part of speech tags.
 * @param spellingTokenizer Tokenizer for spelling.
 *
 * <p>
 * On output, sets the lemma field of the adorned word
 * We look in the word lexicon first for the lemma.
 * If the lexicon does not contain the lemma, we
 * use the lemmatizer.

10/01/13 MorphAdorner Page 168

 * </p>
 */

 public static void setLemma
 (
 AdornedWord adornedWord ,
 Lexicon lexicon ,
 Lemmatizer lemmatizer ,
 PartOfSpeechTags partOfSpeechTags ,
 WordTokenizer spellingTokenizer
)
 {
 String spelling = adornedWord.getSpelling();
 String partOfSpeech = adornedWord.getPartsOfSpeech();
 String lemmata = spelling;

 // Get lemmatization word class
 // for part of speech.
 String lemmaClass =
 partOfSpeechTags.getLemmaWordClass(partOfSpeech);

 // Do not lemmatize words which
 // should not be lemmatized,
 // including proper names.

 if (lemmatizer.cantLemmatize(spelling) ||
 lemmaClass.equals("none")
)
 {
 }
 else
 {
 // Try compound word exceptions
 // list first.

 lemmata = lemmatizer.lemmatize(spelling , "compound");

 // If lemma not found, keep trying.

 if (lemmata.equals(spelling))
 {
 // Extract individual word parts.
 // May be more than one for a
 // contraction.

 List wordList =
 spellingTokenizer.extractWords(spelling);

 // If just one word part,
 // get its lemma.

 if (!partOfSpeechTags.isCompoundTag(partOfSpeech) ||
 (wordList.size() == 1)
)
 {
 if (lemmaClass.length() == 0)
 {

10/01/13 MorphAdorner Page 169

 lemmata = lemmatizer.lemmatize(spelling);
 }
 else
 {
 lemmata =
 lemmatizer.lemmatize(spelling , lemmaClass);
 }
 }
 // More than one word part.
 // Get lemma for each part and
 // concatenate them with the
 // lemma separator to form a
 // compound lemma.
 else
 {
 lemmata = "";
 String lemmaPiece = "";
 String[] posTags =
 partOfSpeechTags.splitTag(partOfSpeech);

 if (posTags.length == wordList.size())
 {
 for (int i = 0 ; i < wordList.size() ; i++)
 {
 String wordPiece = (String)wordList.get(i);

 if (i > 0)
 {
 lemmata = lemmata + lemmaSeparator;
 }

 lemmaClass =
 partOfSpeechTags.getLemmaWordClass
 (
 posTags[i]
);

 lemmaPiece =
 lemmatizer.lemmatize
 (
 wordPiece ,
 lemmaClass
);

 lemmata = lemmata + lemmaPiece;
 }
 }
 }
 }
 }

 adornedWord.setLemmata(lemmata);
 }
}

/*
Copyright (c) 2008, 2013 by Northwestern University.

10/01/13 MorphAdorner Page 170

All rights reserved.

Developed by:
 Academic and Research Technologies
 Northwestern University
 http://www.it.northwestern.edu/about/departments/at/

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal with the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimers.

 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimers in the documentation and/or other materials provided
 with the distribution.

 * Neither the names of Academic and Research Technologies,
 Northwestern University, nor the names of its contributors may be
 used to endorse or promote products derived from this Software
 without specific prior written permission.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE.
*/

10/01/13 MorphAdorner Page 171

Example Three: Finding sentence and token offsets
You may want to locate word and sentence boundaries as a first step in text processing. Here we
produce a program called SentenceAndTokenOffsets to find such boundaries and locate the character
offsets of each sentence and word as well.

First you need to break up the text into sentences and words. In MorphAdorner you use a sentence
splitter and a word tokenizer to perform these tasks. You can use MorphAdorner's default sentence
splitter and default word tokenizer by creating an instance of each as follows.

 WordTokenizer wordTokenizer = new DefaultWordTokenizer();

 SentenceSplitter sentenceSplitter =
 new DefaultSentenceSplitter();

Note that the sentence splitter requires the word tokenizer as a parameter.

To improve the accuracy of the sentence splitter you can create a part of speech guesser using the
default word lexicon and default suffix lexicon.

 // Create part of speech guesser
 // for use by splitter.

 PartOfSpeechGuesser partOfSpeechGuesser =
 new DefaultPartOfSpeechGuesser();

 // Get default word lexicon for
 // use by part of speech guesser.

 Lexicon lexicon = new DefaultWordLexicon();

 // Set lexicon into guesser.

 partOfSpeechGuesser.setWordLexicon(lexicon);

 // Get default suffix lexicon for
 // use by part of speech guesser.

 Lexicon suffixLexicon = new DefaultSuffixLexicon();

 // Set suffix lexicon into guesser.

 partOfSpeechGuesser.setSuffixLexicon(suffixLexicon);

 // Set guesser into sentence splitter.

 splitter.setPartOfSpeechGuesser(partOfSpeechGuesser);

Sample text: Lincoln's Gettysburg Address

Let's use Abraham Lincoln's "Gettysburg Address" as a sample text.

Four score and seven years ago our fathers brought forth on this continent a new nation,
conceived in Liberty, and dedicated to the proposition that all men are created equal.

10/01/13 MorphAdorner Page 172

Now we are engaged in a great civil war, testing whether that nation, or any nation, so
conceived and so dedicated, can long endure. We are met on a great battle-field of that war.
We have come to dedicate a portion of that field, as a final resting place for those who here
gave their lives that that nation might live. It is altogether fitting and proper that we should do
this.

But, in a larger sense, we can not dedicate—we can not consecrate—we can not hallow—this
ground. The brave men, living and dead, who struggled here, have consecrated it, far above
our poor power to add or detract. The world will little note, nor long remember what we say
here, but it can never forget what they did here. It is for us the living, rather, to be dedicated
here to the unfinished work which they who fought here have thus far so nobly advanced. It is
rather for us to be here dedicated to the great task remaining before us—that from these
honored dead we take increased devotion to that cause for which they gave the last full
measure of devotion—that we here highly resolve that these dead shall not have died in vain—
that this nation, under God, shall have a new birth of freedom—and that government : of the
people, by the people, for the people, shall not perish from the earth.

Place that text into a utf-8 text file called gettysburg.txt . You can use a MorphAdorner utility method
to read the text. You may want to convert all the whitespace characters into blanks for legibility and to
avoid problems with platform specific end of line characters.

 // Load text to split into
 // sentences and tokens.

 String sampleText =
 FileUtils.readTextFile(inputFileName , "utf-8");

 // Convert all whitespace characters
 // into blanks. (Not necessary,
 // but makes the display cleaner below.)

 sampleText = sampleText.replaceAll("\\s" , " ");

Use the sentence splitter and word tokenizer to split the text into a java.util.List of sentences, each of
which is in turn a java.util.List of word and punctuation tokens.

 List<List<String>> sentences =
 sentenceSplitter.extractSentences(
 textToAdorn , wordTokenizer);

Next use the findSentenceOffsets method provided by the sentence splitter to get the list of sentence
offsets. You can use these to find the end of each sentence as well.

 // Get sentence start and end
 // offsets in input text.

 int[] sentenceOffsets =
 splitter.findSentenceOffsets(sampleText , sentences);

Within each sentence you can use the tokenizer method findWordOffsets to locate the start of each
token in a sentence relative to the start of the sentence.

 // Get offsets for each word token
 // relative to this sentence.

10/01/13 MorphAdorner Page 173

http://morphadorner.northwestern.edu/morphadorner/techtalk/sentenceandtokenoffsets/gettysburg.txt

 int[] wordOffsets =
 tokenizer.findWordOffsets(sentence , words);

Putting it altogether

You can peruse the Java source code for SentenceAndTokenOffsets below which puts all the above
code together in a runnable sample program. You will also find the source code in the
src/edu/northwestern/at/morphadorner/examples/ directory in the MorphAdorner
release.

Running the program

Executing SentenceAndTokenOffsets with the Gettysburg Address text as input produces the output
below. Only show the first two sentences are shown. Long output lines have been folded.

Each sentence and word token is preceded with an ordinal starting at 0, followed by starting and ending
character offsets in brackets. For example:

• Sentence ordinal 0 starts at character 0 and ends at character 174.
• Word ordinal 0 starts at character 0 and ends at character 3.

The word offsets are relative to the start of the sentence. Consider the word at ordinal 1 in sentence
ordinal 1, "we", which starts at character position 6 relative to the start of the sentence. Its absolute
character offset is 175 (the offset of sentence 1) + 6 or 181.

0 [0,174]: Four score and seven years ago our fathers brought forth
 on this continent a new nation, conceived in Liberty, and dedicated
 to the proposition that all men are created equal.
 0 [0,3]: Four
 1 [5,9]: score
 2 [11,13]: and
 3 [15,19]: seven
 4 [21,25]: years
 5 [27,29]: ago
 6 [31,33]: our
 7 [35,41]: fathers
 8 [43,49]: brought
 9 [51,55]: forth
 10 [57,58]: on
 11 [60,63]: this
 12 [65,73]: continent
 13 [75,75]: a
 14 [77,79]: new
 15 [81,86]: nation
 16 [87,87]: ,
 17 [89,97]: conceived
 18 [99,100]: in
 19 [102,108]: Liberty
 20 [109,109]: ,

10/01/13 MorphAdorner Page 174

 21 [111,113]: and
 22 [115,123]: dedicated
 23 [125,126]: to
 24 [128,130]: the
 25 [132,142]: proposition
 26 [144,147]: that
 27 [149,151]: all
 28 [153,155]: men
 29 [157,159]: are
 30 [161,167]: created
 31 [169,173]: equal
 32 [174,174]: .
1 [175,308]: Now we are engaged in a great civil war,
 testing whether that nation, or any nation, so conceived and
so dedicated, can long endure.
 0 [2,4]: Now
 1 [6,7]: we
 2 [9,11]: are
 3 [13,19]: engaged
 4 [21,22]: in
 5 [24,24]: a
 6 [26,30]: great
 7 [32,36]: civil
 8 [38,40]: war
 9 [41,41]: ,
 10 [43,49]: testing
 11 [51,57]: whether
 12 [59,62]: that
 13 [64,69]: nation
 14 [70,70]: ,
 15 [72,73]: or
 16 [75,77]: any
 17 [79,84]: nation
 18 [85,85]: ,
 19 [87,88]: so
 20 [90,98]: conceived
 21 [100,102]: and
 22 [104,105]: so
 23 [107,115]: dedicated
 24 [116,116]: ,
 25 [118,120]: can
 26 [122,125]: long
 27 [127,132]: endure
 28 [133,133]: .

package edu.northwestern.at.morphadorner.examples;

10/01/13 MorphAdorner Page 175

/* Please see the license information at the end of this file. */

import java.io.*;
import java.text.*;
import java.util.*;

import edu.northwestern.at.utils.*;
import edu.northwestern.at.utils.corpuslinguistics.lexicon.*;
import edu.northwestern.at.utils.corpuslinguistics.postagger.guesser.*;
import edu.northwestern.at.utils.corpuslinguistics.sentencesplitter.*;
import edu.northwestern.at.utils.corpuslinguistics.tokenizer.*;

/** SentenceAndTokenOffsets: Display sentence and token offsets in text.
 *
 * <p>
 * Usage:
 * </p>
 *
 * <p>
 * <code>
 * java -Xmx256m edu.northwestern.at.morphadorner.example.SentenceAndTokenOffsets
InputFileName
 * </code>
 * </p>
 *
 * <p>
 * where "InputFileName" specifies the name of a text file to split
 * into sentences and word tokens. The default sentence splitter,
 * tokenizer, part of speech guesser, and word and suffix lexicons
 * are used.
 * </p>
 *
 * <p>
 * Example:
 * </p>
 *
 * <p>
 * <code>
 * java -Xmx256m edu.northwestern.at.morphadorner.example.AdornAString mytext.txt
 * </code>
 * </p>
 *
 * <p>
 * The output displays each extracted sentence along with its starting and
 * ending offset in the text read from the specified input file.
 * For each sentence, a list of the extracted tokens in that sentence
 * is displayed along with each token's starting and ending offset
 * relative to the start of the sentence text.
 * </p>
 */

public class SentenceAndTokenOffsets
{
 /** Main program.
 *
 * @param args Command line arguments.
 */

10/01/13 MorphAdorner Page 176

 public static void main(String[] args)
 {
 try
 {
 if (args.length > 0)
 {
 displayOffsets(args[0]);
 }
 else
 {
 System.err.println(
 "Usage: SentenceAndTokenOffsets inputFileName");
 }
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 /** Display sentence and token offsets in text.
 *
 * @param inputFileName Input file name.
 */

 public static void displayOffsets(String inputFileName)
 throws Exception
 {
 // Wrap standard output as utf-8.

 PrintStream printOut =
 new PrintStream
 (
 new BufferedOutputStream(System.out) ,
 true ,
 "utf-8"
);
 // Load text to split into
 // sentences and tokens.

 String sampleText =
 FileUtils.readTextFile(inputFileName , "utf-8");

 // Convert all whitespace characters
 // into blanks. (Not necessary,
 // but makes the display cleaner below.)

 sampleText = sampleText.replaceAll("\\s" , " ");

 // Create default sentence splitter.

 SentenceSplitter splitter = new DefaultSentenceSplitter();

 // Create part of speech guesser
 // for use by splitter.

10/01/13 MorphAdorner Page 177

 PartOfSpeechGuesser partOfSpeechGuesser =
 new DefaultPartOfSpeechGuesser();

 // Get default word lexicon for
 // use by part of speech guesser.

 Lexicon lexicon = new DefaultWordLexicon();

 // Set lexicon into guesser.

 partOfSpeechGuesser.setWordLexicon(lexicon);

 // Get default suffix lexicon for
 // use by part of speech guesser.

 Lexicon suffixLexicon = new DefaultSuffixLexicon();

 // Set suffix lexicon into guesser.

 partOfSpeechGuesser.setSuffixLexicon(suffixLexicon);

 // Set guesser into sentence splitter.

 splitter.setPartOfSpeechGuesser(partOfSpeechGuesser);

 // Create default word tokenizer.

 WordTokenizer tokenizer = new DefaultWordTokenizer();

 // Split input text into sentences
 // and words.

 List<List<String>> sentences =
 splitter.extractSentences
 (
 sampleText ,
 tokenizer
);
 // Get sentence start and end
 // offsets in input text.

 int[] sentenceOffsets =
 splitter.findSentenceOffsets(sampleText , sentences);

 // Loop over sentences.

 for (int i = 0 ; i < sentences.size() ; i++)
 {
 // Get start and end offset of
 // sentence text. Note: the
 // end is the end + 1 since that
 // is what substring wants.

 int start = sentenceOffsets[i];
 int end = sentenceOffsets[i + 1];

 // Get sentence text.

10/01/13 MorphAdorner Page 178

 String sentence =
 sampleText.substring(start , end);

 // Display sentence number,
 // start, end, and text.

 printOut.println(
 i + " [" + start + "," + (end - 1) + "]: " + sentence);

 // Get word tokens in this sentence.

 List words = sentences.get(i);

 // Get offsets for each word token
 // relative to this sentence.

 int[] wordOffsets =
 tokenizer.findWordOffsets(sentence , words);

 // Loop over word tokens.

 for (int j = 0 ; j < words.size() ; j++)
 {
 // Get start and end offset of
 // this word token. Note: the
 // end is the end + 1 since that
 // is what substring wants.

 start = wordOffsets[j];
 end =
 wordOffsets[j] + words.get(j).toString().length();

 // Display token number,
 // start, end, and text.

 printOut.println
 (
 " " + j + " [" + start + "," +
 (end - 1) + "]: " +
 sentence.substring(start , end)
);
 }
 }
 }
}

/*
Copyright (c) 2008, 2013 by Northwestern University.
All rights reserved.

Developed by:
 Academic and Research Technologies
 Northwestern University
 http://www.it.northwestern.edu/about/departments/at/

Permission is hereby granted, free of charge, to any person

10/01/13 MorphAdorner Page 179

obtaining a copy of this software and associated documentation
files (the "Software"), to deal with the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimers.

 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimers in the documentation and/or other materials provided
 with the distribution.

 * Neither the names of Academic and Research Technologies,
 Northwestern University, nor the names of its contributors may be
 used to endorse or promote products derived from this Software
 without specific prior written permission.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE.
*/

10/01/13 MorphAdorner Page 180

Example Four: Using An Adorned Text
Once you have MorphAdorned a text you probably want to do something with it. The
AdornedXMLReader allows you to read an adorned file and extract a list of ExtendedAdornedWord
entries. In addition to the morphological information encoded in adorned files, each
ExtendedAdornedWord also provides extra information including the word and sentence number,
whether a word occurs in main or paratext, whether a word occurs in verse, the XML tag path, and
other things. AdornedXMLReader also allows you to extract sentences easily.

Sample text

We will use Nathaniel Hawthorne's short story "The Shaker Bridal" from Twice Told Tales as a sample
text. The adorned XML text is found in eaf434.zip.

To load the word information from an adorned file, create an AdornedXMLReader and pass the name
of the adorned file to read as a parameter. Here we load eaf434.xml which contains the adorned XML
for "The Shaker Bridal."

 AdornedXMLReader xmlReader = new AdornedXMLReader("eaf434.xml");

To extract the list of word IDs, use the getAdornedWordIDs method of AdornedXMLReader.

 List<String> wordIDs =
 xmlReader.getAdornedWordIDs();

Given a word ID you can use the getExtendedAdornedWord method of AdornedXMLReader to
obtain the word information as an ExtendedAdornedWord.

To extract the list of sentences, use the getSentences method of AdornedXMLReader.

 List<List<ExtendedAdornedWord>> sentences =
 xmlReader.getSentences();

Generating displayable sentences

You can regenerate displayable sentences using the SentenceMelder class, which only requires a list of
ExtendedAdornedWord entries. Here we print the first five sentences of an adorned file.

 PrintStream printStream =
 new PrintStream
 (
 new BufferedOutputStream(System.out) ,
 true ,
 "utf-8"
);

 printStream.println();

 printStream.println
 (
 "The first five sentences are:"
);

 printStream.println();

10/01/13 MorphAdorner Page 181

http://morphadorner.northwestern.edu/morphadorner/techtalk/usinganadornedtext/eaf434.zip

 printStream.println(StringUtils.dupl("-" , 70));

 SentenceMelder melder = new SentenceMelder();

 for (int i = 0 ;
 i < Math.min(5 , sentences.size()) ; i++)
 {
 // Get text for this sentence.

 String sentenceText =
 melder.reconstituteSentence(sentences.get(i));

 // Wrap the sentence text at column 70.

 sentenceText =
 StringUtils.wrapText(
 sentenceText, Env.LINE_SEPARATOR , 70);

 // Print wrapped sentence text.

 printStream.println
 (
 (i + 1) + ": " +
 sentenceText
);
 }

Extracting individual word information

Each sentence is a list of ExtendedAdornedWord entries. For example, we can extract word
information for each word in the second sentence of a text as follows.

 List<ExtendedAdornedWord> sentence = sentences.get(2);

 for (int i = 0 ; i < sentence.size() ; i++)
 {
 ExtendedAdornedWord adornedWord = sentence.get(i);

 printStream.println("Word " + (i + 1));

 printStream.println(
 " Word ID : " + adornedWord.getID());
 printStream.println(
 " Token : " + adornedWord.getToken());
 printStream.println(
 " Spelling : " + adornedWord.getSpelling());
 printStream.println(
 " Lemmata : " + adornedWord.getLemmata());
 printStream.println(
 " Pos tags : " +
 adornedWord.getPartsOfSpeech());
 printStream.println(
 " Standard spelling: " +
 adornedWord.getStandardSpelling());
 printStream.println(
 " Sentence number : " +

10/01/13 MorphAdorner Page 182

 adornedWord.getSentenceNumber());
 printStream.println(
 " Word number : " +
 adornedWord.getWordNumber());
 printStream.println(
 " XML path : " +
 adornedWord.getPath());
 printStream.println(
 " is EOS : " +
 adornedWord.getEOS());
 printStream.println(
 " word part flag : " +
 adornedWord.getPart());
 printStream.println(
 " word ordinal : " +
 adornedWord.getOrd());
 printStream.println(
 " page number : " +
 adornedWord.getPageNumber());
 printStream.println(
 " Main or side text: " +
 adornedWord.getMainSide());
 printStream.println(
 " is spoken : " +
 adornedWord.getSpoken());
 printStream.println(
 " is verse : " +
 adornedWord.getVerse());
 printStream.println(
 " in jump tag : " +
 adornedWord.getInJumpTag());
 printStream.println(
 " is a gap : " +
 adornedWord.getGap());
 }
}

The word information for the ninth word in the third sentence of "The Shaker Bridal" is:

 Word ID : eaf434-00440
 Token : Father
 Spelling : Father
 Lemmata : father
 Pos tags : n1
 Standard spelling: Father
 Sentence number : 3
 Word number : 9
 XML path : \eaf434\body[1]\div[1]\p[1]\w[8]
 is EOS : false
 word part flag : N
 word ordinal : 21
 page number : 8
 Main or side text: MAIN
 is spoken : false
 is verse : false
 in jump tag : false
 is a gap : false

10/01/13 MorphAdorner Page 183

Word Paths

The XML word path takes the form

\document\struct[i]\struct2[j]\struct3[k]...\w[n]

where "document" is the document name (e.g., eaf434 for "The Shaker Bridal"), the "struct[]" elements
are the XML tags names with numbers assigned in order of appearance in a given document subtree,
and "w[]" is the word number with the current parent structural element. The path gives a flattened
version of the XML ancestry for each word.

The structure numbers start at 1 (not 0) and start over for each document subtree. For example, this
means that paragraph numbers (e.g., "p" element numbers) start over for each "div" .

Here is a typical word path ID:

\eaf434\body[1]\div[1]\p[1]\w[26]

In this example "eaf434" is the document name. "body[1]" is the first (and usually only) body element.
div[1] corresponds to the first text division of "The Shaker Bridal" (but could be something else for
another document). p[1] is paragraph 1, and w[26] is the twenty-sixth word in paragraph 1.

Generating XML

Given a list of adjacent adorned words, we can use their word paths to reconstitute an XML
representation of the text for those words. We do this by using an XML element stack and pushing and
popping XML elements as needed to represent the structural changes indicated by the succession of
word path IDs. The XML will not match the original exactly, but is good enough for display purposes.
The word range need not be confined to any specific structural element -- we can easily generate well-
formed XML even when the range of words spans structural elements and indeed even if the word
range does not correspond to complete sentences. This would not be true if we extracted the actual
original XML corresponding to the span of word IDs.

To get the XML representation we use the generateXML method of AdornedXMLReader by passing
the starting and ending word IDs for which we want the XML. The generateXML method uses the
method just described to generate well-formed XML even the range of text specified by the word IDs
spans XML structural boundaries.

 String xml =
 xmlReader.generateXML(firstWordID , secondWordID);

Consider the span of word IDs "eaf434-02040" through "eaf434-02780". This is a "nice" range which is
wholly contained within interior structural elements. The reconstituted XML follows.

 <body>
 <div>
 <p>
 His brethren of the north had now courteously
 invited him to be present on an occasion, when the concurrence of
 every eminent member of their community was peculiarly desirable.
 </p>
 <p>
 The venerable Father Ephraim sat in his easychair, not
 only hoary-headed and infirm with age, but worn down by a

10/01/13 MorphAdorner Page 184

 lingering disease, which, it was evident, would very soon
 transfer his patriarchal staff to other hands.
 </p>
 </div>
 </body>

Now consider the span of word IDs "eaf434-03630" through "eaf434-05250". These word IDs run over
a paragraph boundary (marked by the XML <p> tag). The reconstituted XML follows.

 <body>
 <div>
 <p>
 guided my choice aright.’
 </p>
 <p>
 Accordingly, each elder looked at the two candidates
 with a most scrutinizing gaze.
 The man, whose name was Adam Colburn, had a face sunburnt with
 labor in the fields, yet intelligent, thoughtful, and traced with
 cares enough for a whole lifetime, though he had barely reached
 middle age.
 There was something severe in his aspect, and a rigidity
 throughout his person, characteristics that caused him generally
 to be taken for a schoolmaster; which vocation, in fact, he had
 formerly exercised for several years.
 The woman, Martha Pierson, was somewhat above thirty, thin and
 pale, as a Shaker sister almost invariably is, and not entirely
 free from that corpselike appearance, which the garb of the
 sisterhood is so well calculated to impart.
 </p>
 <p>
 ‘This pair are still in the summer
 </p>
 </div>
 </body>

Searching word paths

The word paths can be searched using regular expression pattern matches to do things like count words
that appear in particular XML nesting structures, find all sibling words in a given paragraph, and so on.

Putting it altogether

You can peruse the Java source code below for UsingAnAdornedText which puts all the above code
together in a runnable sample program. You will also find the source code in the
src/edu/northwestern/at/morphadorner/examples/ directory in the MorphAdorner
release.

package edu.northwestern.at.morphadorner.examples;

/* Please see the license information at the end of this file. */

import java.io.*;
import java.util.*;

10/01/13 MorphAdorner Page 185

import edu.northwestern.at.morphadorner.tools.*;
import edu.northwestern.at.utils.*;
import edu.northwestern.at.utils.corpuslinguistics.sentencemelder.*;

/** Using an adorned text.
 *
 * <p>
 * Usage:
 * </p>
 *
 * <p>
 * <code>
 * java -Xmx256m edu.northwestern.at.morphadorner.example.UsingAnAdornedText
adornedtext.xml id1 id2 id3 id4
 * </code>
 * </p>
 *
 * <p>
 * where
 * </p>
 *
 *
 * adorntext.xml is a MorphAdorned XML file
 * id1 is a word ID in the adorned XML file
 * id2 is a word ID in the adorned XML file which follows id1
 * id3 is a word ID in the adorned XML file
 * id4 is a word ID in the adorned XML file which follows id4
 *
 */

public class UsingAnAdornedText
{
 /** Adorned XML reader. */

 protected static AdornedXMLReader xmlReader;

 /** The word IDs. */

 protected static List<String> wordIDs =
 ListFactory.createNewList();

 /** UTF-8 print stream. */

 protected static PrintStream printStream;

 /** Main program. */

 public static void main(String[] args)
 {
 try
 {
 doit(args);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }

10/01/13 MorphAdorner Page 186

 }

 /** Read adorned file and perform extraction operations. */

 public static void doit(String[] args)
 throws Exception
 {
 printStream =
 new PrintStream
 (
 new BufferedOutputStream(System.out) ,
 true ,
 "utf-8"
);
 // Read adorned input file.

 xmlReader = new AdornedXMLReader(args[0]);

 // Get list of word IDs.

 wordIDs = xmlReader.getAdornedWordIDs();

 // Report number of words in input.
 printStream.println
 (
 "Read " +
 StringUtils.formatNumberWithCommas(wordIDs.size()) +
 " words from " + args[0] + " ."
);
 // Get sentences.

 List<List<ExtendedAdornedWord>> sentences =
 xmlReader.getSentences();

 // Report number of sentences in input.
 printStream.println
 (
 "Read " +
 StringUtils.formatNumberWithCommas(sentences.size()) +
 " sentences from " + args[0] + " ."
);
 // Display the first five sentences.
 // We use a sentence melder.
 // We also wrap the sentence text
 // at column 70 for display purposes.

 printStream.println();

 printStream.println
 (
 "The first five sentences are:"
);

 printStream.println();
 printStream.println(StringUtils.dupl("-" , 70));

 SentenceMelder melder = new SentenceMelder();

10/01/13 MorphAdorner Page 187

 for (int i = 0 ; i < Math.min(5 , sentences.size()) ; i++)
 {
 // Get text for this sentence.

 String sentenceText =
 melder.reconstituteSentence(sentences.get(i));

 // Wrap the sentence text at column 70.

 sentenceText =
 StringUtils.wrapText(
 sentenceText, Env.LINE_SEPARATOR , 70);

 // Print wrapped sentence text.

 printStream.println
 (
 (i + 1) + ": " +
 sentenceText
);
 }

 printStream.println(StringUtils.dupl("-" , 70));
 printStream.println();

 // Word information for words in the
 // third sentence.

 if (sentences.size() > 2)
 {
 printStream.println();

 printStream.println
 (
 "Words in the third sentence:"
);

 printStream.println();
 printStream.println(StringUtils.dupl("-" , 70));

 List<ExtendedAdornedWord> sentence = sentences.get(2);

 for (int i = 0 ; i < sentence.size() ; i++)
 {
 ExtendedAdornedWord adornedWord = sentence.get(i);

 printStream.println("Word " + (i + 1));

 printStream.println(
 " Word ID : " + adornedWord.getID());
 printStream.println(
 " Token : " + adornedWord.getToken());
 printStream.println(
 " Spelling : " + adornedWord.getSpelling());
 printStream.println(
 " Lemmata : " + adornedWord.getLemmata());

10/01/13 MorphAdorner Page 188

 printStream.println(
 " Pos tags : " +
 adornedWord.getPartsOfSpeech());
 printStream.println(
 " Standard spelling: " +
 adornedWord.getStandardSpelling());
 printStream.println(
 " Sentence number : " +
 adornedWord.getSentenceNumber());
 printStream.println(
 " Word number : " +
 adornedWord.getWordNumber());
 printStream.println(
 " XML path : " +
 adornedWord.getPath());
 printStream.println(
 " is EOS : " +
 adornedWord.getEOS());
 printStream.println(
 " word part flag : " +
 adornedWord.getPart());
 printStream.println(
 " word ordinal : " +
 adornedWord.getOrd());
 printStream.println(
 " page number : " +
 adornedWord.getPageNumber());
 printStream.println(
 " Main or side text: " +
 adornedWord.getMainSide());
 printStream.println(
 " is spoken : " +
 adornedWord.getSpoken());
 printStream.println(
 " is verse : " +
 adornedWord.getVerse());
 printStream.println(
 " in jump tag : " +
 adornedWord.getInJumpTag());
 printStream.println(
 " is a gap : " +
 adornedWord.getGap());
 }

 printStream.println(StringUtils.dupl("-" , 70));
 printStream.println();
 }
 // Generate xml for selected word ranges.

 generateXML(args[1] , args[2]);
 generateXML(args[3] , args[4]);
 }

 /** Generate XML from one word ID to another.
 *
 * @param firstWordID First word ID.
 * @param secondWordID Second word ID.

10/01/13 MorphAdorner Page 189

 */

 public static void generateXML
 (
 String firstWordID ,
 String secondWordID
)
 {
 // Generate xml for selected word range.

 String xml = xmlReader.generateXML(firstWordID , secondWordID);

 // Display generated xml.

 printStream.println();

 printStream.println("Generated XML for words " +
 firstWordID + " through " + secondWordID + ":");

 printStream.println();
 printStream.println(StringUtils.dupl("-" , 70));
 printStream.println(xml);
 printStream.println(StringUtils.dupl("-" , 70));
 printStream.println();
 }
}

/*
Copyright (c) 2008, 2013 by Northwestern University.
All rights reserved.

Developed by:
 Academic and Research Technologies
 Northwestern University
 http://www.it.northwestern.edu/about/departments/at/

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal with the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimers.

 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimers in the documentation and/or other materials provided
 with the distribution.

 * Neither the names of Academic and Research Technologies,
 Northwestern University, nor the names of its contributors may be
 used to endorse or promote products derived from this Software
 without specific prior written permission.

10/01/13 MorphAdorner Page 190

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE.
*/

10/01/13 MorphAdorner Page 191

MorphAdorner Server
MorphAdorner Server, or MAServer for short, is an HTTP-based server which exposes MorphAdorner
facilities over the web. The server has its own download and installation page (page 193) separate from
the MorphAdorner client.

Below is the complete list of the services offered by the MorphAdorner Server. The page for each
service presents the service name, query parameters, available output formats, and -- for the plain text
services -- sample output. The online examples demonstrate the use of the MorphAdorner Server using
web page forms. Also see “Accessing the server programmatically” (page 200) to learn about writing
Javascript-enhanced web pages and Java programs to access the MorphAdorner server.

Plain text services

The plain text services work on utf-8 encoded text that has not been tagged in any way.

• Adorner for plain text (page 216)
• Corpus configurations (page 229)
• Gap filler (page 232)
• Hyphenator (page 235)
• Language recognizer (page 238)
• Lemmatizer (page 242)
• Lexicon lookup (page 246)
• Name recognizer (page 255)
• Noun Pluralizer (page 259)
• Parser (page 262)
• Sentence splitter (page 265)
• Spelling standardizer (page 275)
• Syllable counter (page 279)
• Text segmenter (page 282)
• Text summarizer (page 302)
• Thesaurus (page 307)
• Tokenizer (page 311)
• Verb conjugator (page 322)
• Version (page 326)

TEI XML services

The TEI XML services work on utf-8 encoded text tagged using the Text Encoding Initiative markup.

• Adorned TEI to tabular format (page 328)
• Adorner for TEI XML (page 330)
• Apply change file to an adorned TEI XML file (page 332)
• Compare adorned TEI XML files and generate change file (page 334)
• Extract text from TEI XML (page 336)
• Extract sentences from TEI XML (page 338)
• Move TEI notes to div (page 340)
• Tokenize TEI XML (page 342)
• Unadorn TEI XML (page 344)

10/01/13 MorphAdorner Page 192

http://morphadorner.northwestern.edu/morphadorner/onlineexamples

MorphAdorner Server Installation
MorphAdorner Server, or MAServer for short, is an HTTP-based server which exposes selected
MorphAdorner facilities over the World Wide Web.

File name: maserver-1.0.0.zip
Current version: 1.0.0.
Last update: September 16, 2013.

The MorphAdorner Server source code and support files, along with an issue tracker, are available as a
Mercurial repository on bitbucket.org at

http://bitbucket.org/pibburns/morphadornerserver

Quick Setup

If you downloaded the MAServer release from the Mercurial repository on bitbucket.org, please go to
the section "Installing and building MAServer."

If you downloaded the ready-to-use maserver-1.0.0.zip file, proceed as follows. Expand the contents of
the maserver-1.0.0.zip file into an empty directory. Make sure you retain the existing directory
structure.

You must have the Java run-time environment installed on your machine to run MAServer. If you do
not, go to the section "Installing and Building MAServer" for information on where to get a copy of the
Java runtime. Once you have Java installed you can proceed with running MAServer.

To run MAServer standalone on Windows, type

runmaserver.bat

at the command line of a console window.

On Unix-like systems, including Mac OS X, type

chmod 755 runmaserver

in a terminal window to set the shell script to execute. You only need to do this once. To run the server,
type

./runmaserver

By default MAServer listens on TCP port 8182. You can change this default port number in the batch
file or shell script. Both the batch file and script request 4 gigabytes of memory to run.

MAServer requires at least 2.5 gigabytes of memory to run with 4 gigabytes preferred. For best results
you should run MAServer on a 64-bit operating system with a 64-bit version of the Java run-time
environment installed. Your system may require more memory than these minimums. In particular, Mac
OS X may require at least 3.0 gigabytes of memory to run MAServer.

You can access the test web pages once MAServer finishes initialization, which can take a couple of

10/01/13 MorphAdorner Page 193

http://bitbucket.org/pibburns/morphadornerserver
http://localhost:8080/morphadorner/download/maserver-1.0.0.zip

minutes on a slow system. Open a web browser on the system on which you are running MAServer and
enter the URL

http://localhost:8182/

You should see the main MAServer test page. If you changed the default TCP port for the server,
replace 8182 in the URL with your modified port number.

File Layout of MorphAdorner Server (MAServer) Release

File or Directory Contents

build.properties Build settings you can modify.

build.xml Apache Ant build file used to compile MAServer.

conf/ Configuration files.

 log4j.properties Logging properties.

 template-web.xml Template for generating web.xml file.

 wadl.xsl Web Application Descriptor Language HTML conversion.

 web-xml.properties Settings for generating web.xml file.

data/ Data files used by server.

doc/ Documentation for using the server.

ivy.xml Apache Ivy dependencies definitions.

ivysettings.xml Apache Ivy settings.

lib/
Java library files used by MAServer. These are retrieved on demand
during the build process using Apache Ivy.

license.txt The MAServer license.

modhist.txt MAServer modification history.

README.txt
Printable copy of this file in Windows text format (lines terminated by
Ascii CR/LF).

runmaserver Unix shell command file to start server in standalone mode.

runmaserver.bat Windows batch file to start server in standalone mode.

src/ MAServer source code.

testdata/ Test data files.

webpages/ Static web pages for testing MAServer facilities.

Installing and Building MAServer

To rebuild the MAServer code, make sure you have installed recent working copies of Oracle's Java
Development Kit and Apache Ant on your system. The Java development kits for Windows, Mac OS
X, and Linux systems may be obtained from

http://www.oracle.com/technetwork/java/javase/downloads/index
.html

10/01/13 MorphAdorner Page 194

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://localhost:8182/

Alternatively, OpenJDK may be obtained from

http://openjdk.java.net/install/index.html

http://ant.apache.org

Move to the directory into which you unzipped the MAServer release (or into which you cloned a local
copy of the Mercurial repository for MAServer).

Use a plain text editor to edit the "build.properties" file. You should provide values for the following
three settings.

1. The "serverdata.dir" setting should be set to the MAServer data directory for a remote
installation of MAServer. This can be a local directory on your desktop if you are running
MAServer under a local copy of a servlet server. This value is used only by the Ant
"copyserverdata" task. If you don't intend to use that task to copy the server data, you may leave
"serverdata.dir" empty.

2. The "localServerURL" setting should be set to the base URL of your local MAServer
installation. The default value of

localServerURL=http://localhost:8182/

is fine for out-of-the-box use when you run the server using runmaserver.bat/runmaserver .

3. The "remoteServerURL" setting should be set to the base URL of your remote installation of
MAServer, if any. This is needed to run tests against that server. If you only intend to run the
built-in server version of MAServer (using runmaserver.bat/runmaserver), you may leave this
setting empty.

For example, if your server name is "myremotehost.com", you would enter something like:

remoteServerURL=http://myremotehost.com/maserver/

If you intend to run MAServer under a local copy of a servlet server such as Tomcat or Jetty on
your own desktop, you can set the remoteServerURL to point to your desktop. In this case the
setting will be something like:

remoteServerURL=http://localhost:8080/maserver/

Once you have set the above three entries in build.properties appropriately, save the
build.properties file with the updated values.

To run MAServer under a servlet server such as Tomcat, you must also modify the settings in the
conf/web-xml.properties file. Open this file with a plain text editor, and provide values for the
following settings.

1. The "datadirectory" settings specifies the location of the MAServer data files -as seen by the
servlet server-. This may differ from the value you set for "serverdata.dir" in the build.properties
file.

2. The "maxunadorneduploadfilesize" specifies the maximum file size in bytes of an unadorned
TEI XML file which the server will accept as an upload. The default value is "5m" or 5

10/01/13 MorphAdorner Page 195

http://ant.apache.org/
http://openjdk.java.net/install/index.html

megabytes.

3. The "maxadorneduploadfilesize" specifies the maximum file size in bytes of an adorned TEI
XML file which the server will accept as an upload. The default value is "50m" or 50
megabytes. The larger the file size limits provided, the more memory the server requires to
process the files.

Save the conf/web-xml.proerties file with the updated values.

After you have set the values in the build.properties and conf/web-xml.properties files appropriately,
open a console or terminal window, move to the base directory of the MAServer release, and type:

ant

to build MAServer. If the build completes successfully, the maserver.jar and maserver.war files will be
placed in the "dist" subdirectory.

You must use a Java compiler which is compatible with Java 1.6 or higher. MAserver has been
successfully compiled and executed under Windows and Linux using the standard Oracle JDK 1.6 and
1.7 releases; under Linux using a recent release of OpenJDK 7; and under Mac OS X using a recent
version of the standard MAC OS X Java compiler and run-time. Other Java compilers and run-times
may not work.

Type

ant javadoc

to generate the javadoc (internal documentation) into subdirectory "javadoc".

Type

ant clean

to remove the effects of compilation. This does not remove the downloaded files in the lib subdirectory.
To remove those as well, type

ant cleanlib

Once in a while, if you are having trouble compiling, you may need to clean your Ivy cache to make
sure you have the correct library files. Type

ant cleancache

to clean the Ivy cache.

Running MAServer In A Servlet Server

To deploy MAServer in a servlet server such as Tomcat you need to do four things:

1. Copy the data directory to a location of your choosing.

Copy the entire data/ directory along with its subdirectories to a directory somewhere on your
system. By default this directory is defined as /project/maserverdata . You should change this
setting in the conf/web-xml.properties file by setting the value of the "datadirectory" property to

10/01/13 MorphAdorner Page 196

the correct directory name on your server.

If the remote server data directory is mounted so that you can access it locally, you can type

ant copyserverdata

to copy the data files to the remote directory you specified as the value of the "serverdata.dir"
setting in the build.properties file.

The data directory you select, and all its subdirectories, must be readable by your chosen servlet
server. The servlet server must also have permission to change to that directory while running.

2. Rebuild the maserver.war file.

Rebuild the maserver.war file by typing

ant war

in a console/terminal window. The updated maserver.war file is written to dist/maserver.war .

3. Install the rebuilt maserver.war file into your servlet server.

Different servlet servers have various methods for doing this. Consult the documentation for
your particular servlet server for details.

For example, in Tomcat, you can copy the maserver.war file to the Tomcat "webapps"
subdirectory. Make sure you have configured Tomcat to deploy WAR files automatically by
setting the "autoDeploy" option to "true" in the Host container element. See

http://tomcat.apache.org/tomcat-7.0-doc/config/host.html

for details.

MAServer has been tested to work under both Tomcat (v7) and Jetty (v8).

4. Restart your servlet server.

Some servlet servers can "hot install" new web applications presented as a war file, so you may not
have to restart your server. It's usually a good idea to restart the server anyway. You must restart the
server if you stopped the server before installing the MAServer war file.

After you restart your servlet server, MAServer should become available within a couple of minutes
under the application name "maserver". Open a web browser on the system on which you are running
the server and navigate to the web page URL

http://servername:8080/maserver/

Replace "servername" with the name of the system on which you installed MAServer, and replace
"8080" with the TCP port number for accessing your servlet server. You should see the main MAServer
services web page once MAServer initialization completes.

Testing

The MAServer release contains a small set of tests which may be used to test the server's operation.
These are not intended to be comprehensive.

10/01/13 MorphAdorner Page 197

http://servername:8080/maserver/
http://tomcat.apache.org/tomcat-7.0-doc/config/host.html

To run the tests, make sure you've provided values for the "remoteServerURL" and/or
"localServerURL" settings in build.properties, as described above.

The run the tests against a local MAServer instance, start that instance, then open a console/terminal
window and type:

ant runlocaltests

To run the tests against a remote MAServer instamce, make sure the remote instance is running, and
type:

ant runremotetests

Examine the output for error messages. Usually either all of the tests will run successfully, or all of
them will fail (usually because the MAServer instance isn't started or is blocked by a firewall).

License

MAServer is licensed under the same NCSA style open source license as MorphAdorner. See the
license.txt file for details of this license.

Documentation

The maserver.pdf file in the doc/ directory contains minimal documentation. At present this consists of
an Adobe acrobat PDF file of the web application description language (WADL) for each MAServer
service in human-legible format. Better documentation is in preparation. When ready it will appear
online as part of the main MorphAdorner documentation at

http://morphadorner.northwestern.edu/

as well as in printable (PDF) format.

You may also access the WADL (web application description language) definitions for all the services
using a web browser. Start the local version of the MAServer server using the runmaserver.bat
(Windows) or runmaserver script (Unix and Mac OS X). Then open the following site in your web
browser:

http://localhost:8182/?method=options

The WADL for an individual service can be retrieved using

http://localhost:8182/servicename?method=options

and replacing "servicename" with the name of the MAServer service for which you want the
documentation. For example, the WADL for the lemmatizer service can be retrieved with:

http://localhost:8182/lemmatizer?method=options

If your system provides the curl utility, you can retrieve the XML formatted WADL descriptions for all
services using curl in a console/terminal window as follows:

curl http://localhost:8182/?method=options

10/01/13 MorphAdorner Page 198

http://localhost:8182/lemmatizer?method=options
http://localhost:8182/servicename?method=options
http://localhost:8182/?method=options
http://morphadorner.northwestern.edu/

You can retrieve the WADL XML for a particular service -- say the lemmatizer service -- as follows:

curl http://localhost:8182/lemmatizer?method=options

You can also retrieve the WADL descriptions from a remotely installed MAServer installation by
replacing "localhost:8182" with the server name and server port of the remote server. Examples:

http://myremotehost.com/maserver/?method=options
http://myremotehost.com/maserver/lemmatizer/?method=options

Replace "myremotehost.com" with the name (and optionally the port number) of your remote
MAServer instance.

Accessing the services

Please see “Accessing the MorphAdorner server programmatically” (page Error: Reference source not
found) for details on accessing the MorphAdorner Server facilties from programs.

10/01/13 MorphAdorner Page 199

http://myremotehost.com/maserver/lemmatizer/?method=options
http://myremotehost.com/maserver/?method=options

MorphAdorner Server: Accessing the server programmatically

How the MorphAdorner Server operates

MorphAdorner Server, or MAServer for short, is an HTTP-based server which exposes MorphAdorner
facilities over the web. Communication with the server takes place using ordinary HTTP protocol GET,
POST and OPTIONS requests. The input format for all services is sent to the server encoded as an
HTML form. Most services return output in one of four selectable formats: JSON, XML, HTML, or
plain text. The remaining services which accept XML files as input only return XML files as output.

MAServer is written using the Restlet web framework.

MAServer can be accessed using an ordinary web browser or via custom programs. Any programming
language can be used as long as it supports sending HTML form data to the server over HTTP, and can
receive responses over HTTP.

The simplest way to access the server is to use forms in plain web pages. Sample web forms appear on
the page defining the service parameters for each service.

Common features of the services

All of the services support cross-origin resource sharing (CORS). This means you can access the
services from a JavaScript script running on any client system. Most web browsers issued the past few
years support CORS, allowing you to use dynamic scripting (Ajax) to access MAServer and embed the
results in web pages dynamically.

Support of GET versus POST

All of the plain text services allow access using either HTTP GET or POST. POST is better when the
amount of text to process is larger than a few hundred characters, as some systems do not handle large
amounts of text through a GET request.

The TEI XML services that accept files as input or output only work with POST requests.

Media format of service responses

The plain text services can generate responses in four different formats.

• Plain utf-8 text. This is convenient if you want the results in a simple text format.
• HTML. This is convenient if you want to embed the results in a web page -- for example, if you

intend to display the results using Ajax calls from a Javascript program.
• JSON. This is convenient for access from script languages like Python.
• XML. This is convenient if you want to postprocess the results using XSLT scripts.

The TEI XML services always generate responses in XML format. The response may optionally be sent
as an attached file, which is the most convenient response format when the request is submitted from a
plain web form.

Using WADL to view the service query parameters

You may also access the WADL (web application description language) definitions for all the services

10/01/13 MorphAdorner Page 200

http://www.restlet.org/

using a web browser. Start the local version of the MAServer server using the runmaserver.bat
(Windows) or runmaserver script (Unix and Mac OS X). Then open the following site in your web
browser:

http://localhost:8182/?method=options

The WADL for an individual service can be retrieved using

http://localhost:8182/servicename?method=options

and replacing "servicename" with the name of the MAServer service for which you want the
documentation. For example, the WADL for the lemmatizer service can be retrieved with:

http://localhost:8182/lemmatizer?method=options

If your system provides the curl utility, you can retrieve the XML formatted WADL descriptions for all
services using curl in a console/terminal window as follows:

curl http://localhost:8182/?method=options

You can retrieve the WADL XML for a particular service -- say the lemmatizer service -- as follows:

curl http://localhost:8182/lemmatizer?method=options

You can also retrieve the WADL descriptions from a remotely installed MAServer installation by
replacing "localhost:8182" with the server name and server port of the remote server. Examples:

http://myremotehost.com/maserver/?method=options
http://myremotehost.com/maserver/lemmatizer/?method=options

Replace "myremotehost.com" with the name (and optionally the port number) of your remote
MAServer instance.

Accessing the server from a web page

The simplest way to access the server is using an ordinary web form on a web page. Following are two
examples: using the plain-text Lemmatizer service, and using the TEI XML tokenizer service.

Example: accessing the Lemmatizer service

Here is a sample form for accessing the Lemmatizer service using a POST request. You must replace
"myremotehost.com" in the form action= parameter with the name of your MorphAdorner server.

<form accept-charset="UTF-8" method="post"
 action="http://myremotehost.com/maserver/lemmatizer"
 target="_blank"
 name="lemmatizer">
<table cellpadding="0" cellspacing="5">
<tr>
<td>Spelling:</td>
<td><input type="text" name="spelling" size="20" value="" /></td>
</tr>
<tr>
<td>

10/01/13 MorphAdorner Page 201

http://myremotehost.com/maserver/lemmatizer/?method=options
http://myremotehost.com/maserver/?method=options
http://localhost:8182/lemmatizer?method=options
http://localhost:8182/servicename?method=options
http://localhost:8182/?method=options

<td><input type="checkbox" name="standardize" value="true" checked="checked"
/>Standardize spelling</td>
</td>
<td> </td>
</tr>
<tr>
<td>Primary word class:</td>
<td>
<select name="wordClass">
<option value="" selected="selected"></option>
<option value="adjective">adjective</option>
<option value="adverb">adverb</option>
<option value="compound">compound</option>
<option value="conjunction">conjunction</option>
<option value="infinitive-to">infinitive-to</option>
<option value="noun">noun</option>
<option value="noun-possessive">noun-possessive</option>
<option value="preposition">preposition</option>
<option value="pronoun">pronoun</option>
<option value="pronoun-possessive">pronoun-possessive</option>
<option value="pronoun-possessive-determiner">pronoun-possessive-
determiner</option>
<option value="verb">verb</option>
</select>
</td>
</tr>
<tr>
<td>Secondary word class:</td>
<td>
<select name="wordClass2">
<option value="" selected="selected"></option>
<option value="adjective">adjective</option>
<option value="adverb">adverb</option>
<option value="compound">compound</option>
<option value="conjunction">conjunction</option>
<option value="infinitive-to">infinitive-to</option>
<option value="noun">noun</option>
<option value="noun-possessive">noun-possessive</option>
<option value="preposition">preposition</option>
<option value="pronoun">pronoun</option>
<option value="pronoun-possessive">pronoun-possessive</option>
<option value="pronoun-possessive-determiner">pronoun-possessive-
determiner</option>
<option value="verb">verb</option>
</select>
</td>
</tr>
<tr>
<td valign="top">

Lexicon:
</td>
<td>
<input type="radio" name="corpusConfig" value="eme">Early Modern English</input>

<input type="radio" name="corpusConfig" value="ece">Eighteen Century
English</input>

10/01/13 MorphAdorner Page 202

<input type="radio" name="corpusConfig" value="ncf" checked="checked">Nineteenth
Century Fiction</input>
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td valign="top">
Results format:
</td>
<td>
<input type="radio" name="media" value="json">JSON format</input>

<input type="radio" name="media" value="xml" checked="checked">XML
format</input>

<input type="radio" name="media" value="html">HTML format</input>

<input type="radio" name="media" value="text">Text format</input>
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td>
<input type="submit" name="lemmatize" value="Lemmatize" />
</td>
</tr>
</table>
</form>

After the user fills out the form and selects the Lemmatize button, the results will be returned in the
selected format onto a new web page.

Example: accessing the Lemmatizer service using Javascript and Ajax

We can modify the form above slightly to demonstrate accessing the server and inserting the results
into a <div> on the same page. We use the jQuery library to provide the Javascript and Ajax access.
The jQuery libraries (jquery-1.10.1.min.js and jquery.form.min.js) should be inserted in the <head>
section of the web page. We also add a custom function ajaxifyForm stored in ajaxify.js which wraps
the JQuery functions to convert a standard web form into an Ajax compatible form.

<script src="jquery-1.10.1.min.js" type="text/javascript">
</script>
<script src="jquery.form.min.js" type="text/javascript">
</script>
<script src="ajaxify.js" type="text/javascript">

10/01/13 MorphAdorner Page 203

http://www.jquery.com/

</script>

10/01/13 MorphAdorner Page 204

The contents of ajaxify.js is:

function ajaxifyForm(formID)
{
 var options =
 {
 target: '#results', // Target element to be updated with
 // server response.
 error:
 function(xhr, textStatus, errorThrown)
 {
 $('#results').empty().append("Error: ");
 $('#results').append(
 "Server returned error code " + xhr.status + ": ");
 $('#results').append(textStatus + ": " + errorThrown);
 }
 };
 // Bind to the form's submit event.
 $("#" + formID).submit
 (
 function()
 {
 // Inside event callbacks 'this' is
 // the DOM element so wrap it in a
 // jQuery object and then invoke
 // ajaxSubmit.
 $(this).ajaxSubmit(options);
 // Return false to prevent standard
 // browser submit and page
 // navigation.
 return false;
 }
);
}

The lemmatizer request form is essentially the same as the plain web form except that we force
selection of the HTML result type using a hidden input form field. This is so we can insert the HTML
results directly into the "results" div element.

<input type="hidden" name="media" value="html" />

Following the end of the form definition we add a jQuery script request which converts the form into
an Ajax request using the ajaxifyForm we defined above. We then add a <div> with the name "result"
which will hold the HTML formatted results return by the server.

<script type="text/javascript">
 $(document).ready(ajaxifyForm('lemmatizer'));
<div id="results" name="results" class="results">
</div>

After the user fills out the form and selects the Lemmatize button, the results will be returned in the
results div below the form.

Here is the entire sample web page for requesting an "ajaxified" lemmatization. Again, you must
replace "myremotehost.com" in the form action= parameter with the name of your MorphAdorner

10/01/13 MorphAdorner Page 205

server.

10/01/13 MorphAdorner Page 206

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Access Lemmatizer Service using Javascript/Ajax</title>
<script src="jquery-1.10.1.min.js" type="text/javascript">
</script>
<script src="jquery.form.min.js" type="text/javascript">
</script>
<script src="ajaxify.js" type="text/javascript">
</script>
</head>
<body>
<form accept-charset="UTF-8" method="post"
 action="http://myremotehost.com/maserver/lemmatizer"
 name="lemmatizer" id="lemmatizer">
<table cellpadding="0" cellspacing="5">
<tr>
<td>Spelling:</td>
<td><input type="text" name="spelling" size="20" value="" /></td>
</tr>
<tr>
<td>
<td><input type="checkbox" name="standardize" value="true" checked="checked"
/>Standardize spelling

<input type="hidden" name="media" value="html" />
</td>
<td> </td>
</tr>
<tr>
<td>Primary word class:</td>
<td>
<select name="wordClass">
<option value="" selected="selected"></option>
<option value="adjective">adjective</option>
<option value="adverb">adverb</option>
<option value="compound">compound</option>
<option value="conjunction">conjunction</option>
<option value="infinitive-to">infinitive-to</option>
<option value="noun">noun</option>
<option value="noun-possessive">noun-possessive</option>
<option value="preposition">preposition</option>
<option value="pronoun">pronoun</option>
<option value="pronoun-possessive">pronoun-possessive</option>
<option value="pronoun-possessive-determiner">pronoun-possessive-
determiner</option>
<option value="verb">verb</option>
</select>
</td>
</tr>
<tr>
<td>Secondary word class:</td>
<td>
<select name="wordClass2">
<option value="" selected="selected"></option>
<option value="adjective">adjective</option>
<option value="adverb">adverb</option>
<option value="compound">compound</option>

10/01/13 MorphAdorner Page 207

<option value="conjunction">conjunction</option>
<option value="infinitive-to">infinitive-to</option>
<option value="noun">noun</option>
<option value="noun-possessive">noun-possessive</option>
<option value="preposition">preposition</option>
<option value="pronoun">pronoun</option>
<option value="pronoun-possessive">pronoun-possessive</option>
<option value="pronoun-possessive-determiner">pronoun-possessive-
determiner</option>
<option value="verb">verb</option>
</select>
</td>
</tr>
<tr>
<td valign="top">

Lexicon:
</td>
<td>
<input type="radio" name="corpusConfig" value="eme">Early Modern English</input>

<input type="radio" name="corpusConfig" value="ece">Eighteen Century
English</input>

<input type="radio" name="corpusConfig" value="ncf" checked="checked">Nineteenth
Century Fiction</input>
</td>
</tr>
<tr>
<td>
<input type="submit" name="lemmatize" value="Lemmatize" />
</td>
</tr>
</table>
</form>
<script type="text/javascript">
 $(document).ready(ajaxifyForm('lemmatizer'));
</script>
<div id="results" name="results">
</div>
</body>
</html>

Example: accessing the Lemmatizer service using an iframe

Some users may elect to turn off JavaScript in their browsers. In this case the Ajax solution above will
not work. An alternative is to display the results of the query in an internal frame or iframe.

The lemmatizer request form is once again mostly the same as the plain web form except that we force
selection of the HTML result type using a hidden input form field and set the name of an iframe as the
target to receive the lemmatizer results using target=. The main downside of the iframe solution is that
the results may display in a different style than the rest of the text on the page. The seamless option on
the iframe definition is intended to correct this, but few browsers support this yet.

The iframe approach is also useful if you want to embed a MorphAdorner server facility into another
web page over which you may not have full control. For example, you can use the iframe approach to

10/01/13 MorphAdorner Page 208

add a MorphAdorner lemmatizer form to a WordPress blog posting.

Here is a sample form for requesting an iframe version of lemmatization. The iframe target element
which receives the lemmatization results is named "resultsiframe". Again, you must replace
"myremotehost.com" in the form action= parameter with the name of your MorphAdorner server.

<form accept-charset="UTF-8" method="post"
 action="http://myremotehost.com/maserver/lemmatizer"
 target="resultsiframe"
 name="lemmatizer">
<table cellpadding="0" cellspacing="5">
<tr>
<td>Spelling:</td>
<td><input type="text" name="spelling" size="20" value="" /></td>
</tr>
<tr>
<td>
<td><input type="checkbox" name="standardize" value="true" checked="checked"
/>Standardize spelling</td>
<input type="hidden" name="media" value="html" />
</td>
<td> </td>
</tr>
<tr>
<td>Primary word class:</td>
<td>
<select name="wordClass">
<option value="" selected="selected"></option>
<option value="adjective">adjective</option>
<option value="adverb">adverb</option>
<option value="compound">compound</option>
<option value="conjunction">conjunction</option>
<option value="infinitive-to">infinitive-to</option>
<option value="noun">noun</option>
<option value="noun-possessive">noun-possessive</option>
<option value="preposition">preposition</option>
<option value="pronoun">pronoun</option>
<option value="pronoun-possessive">pronoun-possessive</option>
<option value="pronoun-possessive-determiner">pronoun-possessive-
determiner</option>
<option value="verb">verb</option>
</select>
</td>
</tr>
<tr>
<td>Secondary word class:</td>
<td>
<select name="wordClass2">
<option value="" selected="selected"></option>
<option value="adjective">adjective</option>
<option value="adverb">adverb</option>
<option value="compound">compound</option>
<option value="conjunction">conjunction</option>
<option value="infinitive-to">infinitive-to</option>
<option value="noun">noun</option>
<option value="noun-possessive">noun-possessive</option>
<option value="preposition">preposition</option>

10/01/13 MorphAdorner Page 209

<option value="pronoun">pronoun</option>
<option value="pronoun-possessive">pronoun-possessive</option>
<option value="pronoun-possessive-determiner">pronoun-possessive-
determiner</option>
<option value="verb">verb</option>
</select>
</td>
</tr>
<tr>
<td valign="top">

Lexicon:
</td>
<td>
<input type="radio" name="corpusConfig" value="eme">Early Modern English</input>

<input type="radio" name="corpusConfig" value="ece">Eighteen Century
English</input>

<input type="radio" name="corpusConfig" value="ncf" checked="checked">Nineteenth
Century Fiction</input>
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td>
<input type="submit" name="lemmatize" value="Lemmatize" />
</td>
</tr>
</table>
</form>
<iframe id="resultsiframe" name="resultsiframe" frameborder="0"
 width="100%" scrolling="auto" seamless="true" height="500px"
 frameborder="0"
 >
</iframe>

Using an iframe as a fallback when JavaScript is not enabled

We can combine the Ajax/JavaScript and iframe approaches. If JavaScript is enabled, we use the Ajax
approach. If JavaScript is not enabled, we fallback to the iframe approach. The <noscript> block which
defines the iframe is only used if JavaScript is disabled or not supported. This combined approach
works in the majority of modern web browsers.

Here is the entire sample web page for requesting an Ajaxified lemmatization result with a fallback to
an iframe version when JavaScript is not enabled. As before, you must replace "myremotehost.com" in
the form action= parameter with the name of your MorphAdorner server.

<html>
<head>

10/01/13 MorphAdorner Page 210

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Access Lemmatizer Service using Javascript/Ajax</title>
<script src="jquery-1.10.1.min.js" type="text/javascript">
</script>
<script src="jquery.form.min.js" type="text/javascript">
</script>
<script src="ajaxify.js" type="text/javascript">
</script>
</head>
<body>
<form accept-charset="UTF-8" method="post"
 action="http://myremotehost.com/maserver/lemmatizer"
 target="resultsiframe"
 name="lemmatizer" id="lemmatizer">
<table cellpadding="0" cellspacing="5">
<tr>
<td>Spelling:</td>
<td><input type="text" name="spelling" size="20" value="" /></td>
</tr>
<tr>
<td>
<td><input type="checkbox" name="standardize" value="true" checked="checked"
/>Standardize spelling

<input type="hidden" name="media" value="html" />
</td>
<td> </td>
</tr>
<tr>
<td>Primary word class:</td>
<td>
<select name="wordClass">
<option value="" selected="selected"></option>
<option value="adjective">adjective</option>
<option value="adverb">adverb</option>
<option value="compound">compound</option>
<option value="conjunction">conjunction</option>
<option value="infinitive-to">infinitive-to</option>
<option value="noun">noun</option>
<option value="noun-possessive">noun-possessive</option>
<option value="preposition">preposition</option>
<option value="pronoun">pronoun</option>
<option value="pronoun-possessive">pronoun-possessive</option>
<option value="pronoun-possessive-determiner">pronoun-possessive-
determiner</option>
<option value="verb">verb</option>
</select>
</td>
</tr>
<tr>
<td>Secondary word class:</td>
<td>
<select name="wordClass2">
<option value="" selected="selected"></option>
<option value="adjective">adjective</option>
<option value="adverb">adverb</option>
<option value="compound">compound</option>
<option value="conjunction">conjunction</option>

10/01/13 MorphAdorner Page 211

<option value="infinitive-to">infinitive-to</option>
<option value="noun">noun</option>
<option value="noun-possessive">noun-possessive</option>
<option value="preposition">preposition</option>
<option value="pronoun">pronoun</option>
<option value="pronoun-possessive">pronoun-possessive</option>
<option value="pronoun-possessive-determiner">pronoun-possessive-
determiner</option>
<option value="verb">verb</option>
</select>
</td>
</tr>
<tr>
<td valign="top">

Lexicon:
</td>
<td>
<input type="radio" name="corpusConfig" value="eme">Early Modern English</input>

<input type="radio" name="corpusConfig" value="ece">Eighteen Century
English</input>

<input type="radio" name="corpusConfig" value="ncf" checked="checked">Nineteenth
Century Fiction</input>
</td>
</tr>
<tr>
<td>
<input type="submit" name="lemmatize" value="Lemmatize" />
</td>
</tr>
</table>
</form>
<script type="text/javascript">
 $(document).ready(ajaxifyForm('lemmatizer'));
</script>
<noscript>
<iframe id="resultsiframe" name="resultsiframe" frameborder="0"
 width="100%" scrolling="auto" seamless="true" height="500px"
 frameborder="0"
 >
</iframe>
</noscript>
<div id="results" name="results">
</div>
</body>
</html>

Example: accessing the Tokenize TEI file service

Here is a sample form for accessing the TEI XML tokenizer service using a POST request. You must
replace "myremotehost.com" in the form action= parameter with the name of your MorphAdorner
server.

<form accept-charset="UTF-8" method="post"
 action="http://myremotehost.com/maserver/teitokenizer"

10/01/13 MorphAdorner Page 212

 target="_blank"
 enctype="multipart/form-data" name="teitokenizer">
<table cellpadding="0" cellspacing="5">
<tr>
<td>
TEI XML file:
</td>
<td>
<input type="file" name="teifile" size="50">
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td> </td>
<td>
<input type="checkbox" name="resultsAsAttachedFile" value="true"
 checked="checked"/>
Send results as attached file
</td>
</tr>
<tr>
<td valign="top">

Lexicon:
</td>
<td>
<input type="radio" name="corpusConfig" value="eme">Early Modern English</input>

<input type="radio" name="corpusConfig" value="ece">Eighteen Century
English</input>

<input type="radio" name="corpusConfig" value="ncf" checked="checked">Nineteenth
Century Fiction</input>
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td colspan="2">
<input type="submit" name="tokenize" value="Tokenize" />
</td>
</tr>
</table>
</form>

10/01/13 MorphAdorner Page 213

After the user fills out the form and selects the Tokenize button, the tokenized TEI file will be returned
either as an attached file (if the "Send results as attached file" option is selected) or as an XML stream
(on a separate web page). In many cases it may be simplest to force the selection of the "Send results as
attached file" option.

Accessing the server from a Java program

You can access the MorphAdorner Server using any programming language which supports access to
remote servers using the HTTP protocol. However, since MAServer is written using the Restlet
framework, it is convenient to use the Restlet libraries to access the server from a Java program.

Example: accessing the Lemmatizer service from a Java program

Here is a simple Java program which accesses the Lemmatizer service using the Restlet libraries. As an
example, we will request the lemma form of the obsolete spelling "strykynge" using the Early Modern
English corpus.

import org.restlet.*;
import org.restlet.resource.*;
import edu.northwestern.at.morphadorner.server.*;
public class trylemmatizer
{
 public static void main(String[] args)
 {
 // Create lemmatizer client resource.
 ClientResource resource =
 new ClientResource
 (
 "http://myremotehost.com/maserver/lemmatizer"
);
 // Add query parameters.
 resource.addQueryParameter("spelling" , "strykynge");
 resource.addQueryParameter("corpusConfig" , "eme");
 resource.addQueryParameter("wordClass" , "verb");
 resource.addQueryParameter("standardize" , "true");
 resource.addQueryParameter("media" , "xml");
 // Get result from server.
 try
 {
 LemmatizerResult result = resource.get(LemmatizerResult.class);
 // Display resultant lemma.
 System.out.println("lemma: " + result.lemma);
 }
 catch (Exception e)
 {
 System.out.println("Error: " + e.getMessage());
 }
 }
}

We create a Restlet client resource, add the service parameters, and perform an HTTP GET request. We
request the results to be returned as XML because Restlet can automtically convert the XML to a Java
object -- in this case, a LemmatizerResult object. We then display the resultant lemma value from the
LemmatizerResult object, or display an error message if the server returns an error.

10/01/13 MorphAdorner Page 214

Example: accessing the Tokenize TEI file service

This example demonstrates sending a TEI XML file to the server for tokenization using a POST
request. We request the tokenized output as XML, store it in a generic Representation object, and pull
out the tokenized text from the Representation using the getText method. We then display the tokenized
text or an error message, if any, from the server.

import org.restlet.*;
import org.restlet.ext.html.*;
import org.restlet.data.*;
import org.restlet.representation.*;
import org.restlet.resource.*;
import edu.northwestern.at.morphadorner.server.*;
public class tryteitokenizer
{
 public static void main(String[] args)
 {
 // Create client resource.
 ClientResource resource =
 new ClientResource
 (
 "http://myremotehost.com/maserver/teitokenizer"
);
 // Create form with query parameters.
 FormDataSet form = new FormDataSet();
 form.setMultipart(true);
 form.getEntries().add(new FormData("corpusConfig" , "ncf"));
 form.getEntries().add(new FormData("media" , "xml"));
 form.getEntries().add(
 new FormData("resultsAsAttachedFile" , "false"));
 FileRepresentation file =
 new FileRepresentation(
 "j:/marylamb.xml" , MediaType.APPLICATION_XML);
 form.getEntries().add(new FormData(" teifile" , file));
 // Get result XML from server.
 try
 {
 Representation result = resource.post(form);
 System.out.println(result.getText());
 }
 catch (Exception e)
 {
 System.out.println("Error: " + e.getMessage());
 }
 }
}

10/01/13 MorphAdorner Page 215

MorphAdorner Server Services: Adorn Plain Text Service
Service name: partofspeechtagger

Service description: Adorn words with their parts of speech.

HTTP methods allowed: GET, POST, OPTIONS

POST accepts as input: application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 corpusConfig
Corpus configuration name. In the standard distribution these are ece,
eme, and ncf.

 media Result format. One of json, xml, html, text .

 text Text to be processed.

 includeInputText
Allowed values are true to include the input text in the output and false to
not include the input text.

 outputReg
Output standardized spelling in TEI XML format. Allowed values are true
to output the standard spelling, false to not output the standard spelling.

 XML output style.
Select outputPlainXML for plain XML, outputTEI for TEI format XML,
or outputTCF for WebLicht TCF format XML.

Sample POST form
<form accept-charset="UTF-8" method="post" action="partofspeechtagger"
 target="_blank"
 name="postagger">
<table cellpadding="0" cellspacing="5">
<tr>
<td>Text:</td>
<td colspan="2">
<textarea name="text" rows="15" cols="76"></textarea>
</td>
</tr>
<tr>
<td valign="top">

Lexicon:
</td>
<td>
<input type="radio" name="corpusConfig" value="eme">Early Modern English</input>

<input type="radio" name="corpusConfig" value="ece">Eighteen Century
English</input>

<input type="radio" name="corpusConfig" value="ncf" checked="checked">Nineteenth
Century Fiction</input>
</td>
</tr>

10/01/13 MorphAdorner Page 216

<tr>
<td> </td>
<td>
<input type="checkbox" name="includeInputText" value="true"
 checked="checked"/>
Include input text in results
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td valign="top">
Results format:
</td>
<td>
<input type="radio" name="media" value="json">JSON format</input>

<input type="radio" name="media" value="xml" checked="checked">XML
format</input>

<input type="radio" name="xmlOutputType" value="outputPlainXML"
checked="checked">Plain XML</input>

<input type="radio" name="xmlOutputType" value="outputTEI">Fragmentary TEI format
XML</input>

<input type="checkbox" name="outputReg" value="false" />Add reg= attribute for
standard spelling

<input type="radio" name="xmlOutputType" value="outputTCF">WebLicht TCF format
XML</input>

<input type="radio" name="media" value="html">HTML format</input>

<input type="radio" name="media" value="text">Text format</input>
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td colspan="2">
<input type="submit" name="adorn" value="Adorn" />
</td>
</tr>
</table>
</form>

10/01/13 MorphAdorner Page 217

Output

Here we adorn the first two sentences of Sarah Hale's poem "Mary had a little lamb."

Mary had a little lamb,
whose fleece was white as snow.
And everywhere that Mary went,
the lamb was sure to go.

The JSON and XML PartOfSpeechTaggerResult echoes the input text and the corpusConfig. The
sentences container wraps a sequence of sentence entries each of which represents a single parsed
sentence from the input text. Each sentence contains a sequence of token entries representing the words
and punctuation in the sentence. Following this is an adornedSentences container which contains a
sequence of adornedSentence entries. Each adornedSentence contains a sequence of adornedWord
entries containing the morphological adornments.

For XML format output, the alternate output formats provide different formatting but the same basic
information.

The HTML and text versions provide tabular versions of the adorned sentences.

JSON output

{
 "PartOfSpeechTaggerResult": {
 "text": "Mary had a little lamb, whose fleece was white as snow. And
everywhere that Mary went, the lamb was sure to go.",
 "corpusConfig": "ncf",
 "sentences": [
 {
 "sentence": [
 {
 "token": [
 "Mary",
 "had",
 "a",
 "little",
 "lamb",
 ",",
 "whose",
 "fleece",
 "was",
 "white",
 "as",
 "snow",
 "."
]
 },
 {
 "token": [
 "And",
 "everywhere",
 "that",
 "Mary",
 "went",

10/01/13 MorphAdorner Page 218

 ",",
 "the",
 "lamb",
 "was",
 "sure",
 "to",
 "go",
 "."
]
 }
]
 }
],
 "adornedSentences": [
 {
 "adornedSentence": [
 {
 "adornedWord": [
 {
 "token": "Mary",
 "spelling": "Mary",
 "standardSpelling": "Mary",
 "lemmata": "Mary",
 "partsOfSpeech": "np1"
 },
 {
 "token": "had",
 "spelling": "had",
 "standardSpelling": "had",
 "lemmata": "have",
 "partsOfSpeech": "vhd"
 },
 {
 "token": "a",
 "spelling": "a",
 "standardSpelling": "a",
 "lemmata": "a",
 "partsOfSpeech": "dt"
 },
 {
 "token": "little",
 "spelling": "little",
 "standardSpelling": "little",
 "lemmata": "little",
 "partsOfSpeech": "j"
 },
 {
 "token": "lamb",
 "spelling": "lamb",
 "standardSpelling": "lamb",
 "lemmata": "lamb",
 "partsOfSpeech": "n1"
 },
 {
 "token": ",",
 "spelling": ",",
 "standardSpelling": ",",

10/01/13 MorphAdorner Page 219

 "lemmata": ",",
 "partsOfSpeech": ","
 },
 {
 "token": "whose",
 "spelling": "whose",
 "standardSpelling": "whose",
 "lemmata": "who",
 "partsOfSpeech": "r-crq"
 },
 {
 "token": "fleece",
 "spelling": "fleece",
 "standardSpelling": "fleece",
 "lemmata": "fleece",
 "partsOfSpeech": "n1"
 },
 {
 "token": "was",
 "spelling": "was",
 "standardSpelling": "was",
 "lemmata": "be",
 "partsOfSpeech": "vbds"
 },
 {
 "token": "white",
 "spelling": "white",
 "standardSpelling": "white",
 "lemmata": "white",
 "partsOfSpeech": "j-jn"
 },
 {
 "token": "as",
 "spelling": "as",
 "standardSpelling": "as",
 "lemmata": "as",
 "partsOfSpeech": "c-acp"
 },
 {
 "token": "snow",
 "spelling": "snow",
 "standardSpelling": "snow",
 "lemmata": "snow",
 "partsOfSpeech": "n1"
 },
 {
 "token": ".",
 "spelling": ".",
 "standardSpelling": ".",
 "lemmata": ".",
 "partsOfSpeech": "."
 }
]
 },
 {
 "adornedWord": [
 {

10/01/13 MorphAdorner Page 220

 "token": "And",
 "spelling": "And",
 "standardSpelling": "And",
 "lemmata": "and",
 "partsOfSpeech": "cc"
 },
 {
 "token": "everywhere",
 "spelling": "everywhere",
 "standardSpelling": "everywhere",
 "lemmata": "everywhere",
 "partsOfSpeech": "av"
 },
 {
 "token": "that",
 "spelling": "that",
 "standardSpelling": "that",
 "lemmata": "that",
 "partsOfSpeech": "cst"
 },
 {
 "token": "Mary",
 "spelling": "Mary",
 "standardSpelling": "Mary",
 "lemmata": "Mary",
 "partsOfSpeech": "np1"
 },
 {
 "token": "went",
 "spelling": "went",
 "standardSpelling": "went",
 "lemmata": "go",
 "partsOfSpeech": "vvd"
 },
 {
 "token": ",",
 "spelling": ",",
 "standardSpelling": ",",
 "lemmata": ",",
 "partsOfSpeech": ","
 },
 {
 "token": "the",
 "spelling": "the",
 "standardSpelling": "the",
 "lemmata": "the",
 "partsOfSpeech": "dt"
 },
 {
 "token": "lamb",
 "spelling": "lamb",
 "standardSpelling": "lamb",
 "lemmata": "lamb",
 "partsOfSpeech": "n1"
 },
 {
 "token": "was",

10/01/13 MorphAdorner Page 221

 "spelling": "was",
 "standardSpelling": "was",
 "lemmata": "be",
 "partsOfSpeech": "vbds"
 },
 {
 "token": "sure",
 "spelling": "sure",
 "standardSpelling": "sure",
 "lemmata": "sure",
 "partsOfSpeech": "j"
 },
 {
 "token": "to",
 "spelling": "to",
 "standardSpelling": "to",
 "lemmata": "to",
 "partsOfSpeech": "pc-acp"
 },
 {
 "token": "go",
 "spelling": "go",
 "standardSpelling": "go",
 "lemmata": "go",
 "partsOfSpeech": "vvi"
 },
 {
 "token": ".",
 "spelling": ".",
 "standardSpelling": ".",
 "lemmata": ".",
 "partsOfSpeech": "."
 }
]
 }
]
 }
],
 "outputTEI": false,
 "outputReg": false,
 "outputTCF": false
 }
}

XML output

<?xml version="1.0"?>
<PartOfSpeechTaggerResult>
 <text>Mary had a little lamb, whose fleece was white as snow. And everywhere
that Mary went, the lamb was sure to go.</text>
 <corpusConfig>ncf</corpusConfig>
 <sentences>
 <sentence>
 <token>Mary</token>
 <token>had</token>
 <token>a</token>

10/01/13 MorphAdorner Page 222

 <token>little</token>
 <token>lamb</token>
 <token>,</token>
 <token>whose</token>
 <token>fleece</token>
 <token>was</token>
 <token>white</token>
 <token>as</token>
 <token>snow</token>
 <token>.</token>
 </sentence>
 <sentence>
 <token>And</token>
 <token>everywhere</token>
 <token>that</token>
 <token>Mary</token>
 <token>went</token>
 <token>,</token>
 <token>the</token>
 <token>lamb</token>
 <token>was</token>
 <token>sure</token>
 <token>to</token>
 <token>go</token>
 <token>.</token>
 </sentence>
 </sentences>
 <adornedSentences>
 <adornedSentence>
 <adornedWord>
 <token>Mary</token>
 <spelling>Mary</spelling>
 <standardSpelling>Mary</standardSpelling>
 <lemmata>Mary</lemmata>
 <partsOfSpeech>np1</partsOfSpeech>
 </adornedWord>
 <adornedWord>
 <token>had</token>
 <spelling>had</spelling>
 <standardSpelling>had</standardSpelling>
 <lemmata>have</lemmata>
 <partsOfSpeech>vhd</partsOfSpeech>
 </adornedWord>
 <adornedWord>
 <token>a</token>
 <spelling>a</spelling>
 <standardSpelling>a</standardSpelling>
 <lemmata>a</lemmata>
 <partsOfSpeech>dt</partsOfSpeech>
 </adornedWord>
 <adornedWord>
 <token>little</token>
 <spelling>little</spelling>
 <standardSpelling>little</standardSpelling>
 <lemmata>little</lemmata>
 <partsOfSpeech>j</partsOfSpeech>
 </adornedWord>

10/01/13 MorphAdorner Page 223

 <adornedWord>
 <token>lamb</token>
 <spelling>lamb</spelling>
 <standardSpelling>lamb</standardSpelling>
 <lemmata>lamb</lemmata>
 <partsOfSpeech>n1</partsOfSpeech>
 </adornedWord>
 <adornedWord>
 <token>,</token>
 <spelling>,</spelling>
 <standardSpelling>,</standardSpelling>
 <lemmata>,</lemmata>
 <partsOfSpeech>,</partsOfSpeech>
 </adornedWord>
 <adornedWord>
 <token>whose</token>
 <spelling>whose</spelling>
 <standardSpelling>whose</standardSpelling>
 <lemmata>who</lemmata>
 <partsOfSpeech>r-crq</partsOfSpeech>
 </adornedWord>
 <adornedWord>
 <token>fleece</token>
 <spelling>fleece</spelling>
 <standardSpelling>fleece</standardSpelling>
 <lemmata>fleece</lemmata>
 <partsOfSpeech>n1</partsOfSpeech>
 </adornedWord>
 <adornedWord>
 <token>was</token>
 <spelling>was</spelling>
 <standardSpelling>was</standardSpelling>
 <lemmata>be</lemmata>
 <partsOfSpeech>vbds</partsOfSpeech>
 </adornedWord>
 <adornedWord>
 <token>white</token>
 <spelling>white</spelling>
 <standardSpelling>white</standardSpelling>
 <lemmata>white</lemmata>
 <partsOfSpeech>j-jn</partsOfSpeech>
 </adornedWord>
 <adornedWord>
 <token>as</token>
 <spelling>as</spelling>
 <standardSpelling>as</standardSpelling>
 <lemmata>as</lemmata>
 <partsOfSpeech>c-acp</partsOfSpeech>
 </adornedWord>
 <adornedWord>
 <token>snow</token>
 <spelling>snow</spelling>
 <standardSpelling>snow</standardSpelling>
 <lemmata>snow</lemmata>
 <partsOfSpeech>n1</partsOfSpeech>
 </adornedWord>
 <adornedWord>

10/01/13 MorphAdorner Page 224

 <token>.</token>
 <spelling>.</spelling>
 <standardSpelling>.</standardSpelling>
 <lemmata>.</lemmata>
 <partsOfSpeech>.</partsOfSpeech>
 </adornedWord>
 </adornedSentence>
 <adornedSentence>
 <adornedWord>
 <token>And</token>
 <spelling>And</spelling>
 <standardSpelling>And</standardSpelling>
 <lemmata>and</lemmata>
 <partsOfSpeech>cc</partsOfSpeech>
 </adornedWord>
 <adornedWord>
 <token>everywhere</token>
 <spelling>everywhere</spelling>
 <standardSpelling>everywhere</standardSpelling>
 <lemmata>everywhere</lemmata>
 <partsOfSpeech>av</partsOfSpeech>
 </adornedWord>
 <adornedWord>
 <token>that</token>
 <spelling>that</spelling>
 <standardSpelling>that</standardSpelling>
 <lemmata>that</lemmata>
 <partsOfSpeech>cst</partsOfSpeech>
 </adornedWord>
 <adornedWord>
 <token>Mary</token>
 <spelling>Mary</spelling>
 <standardSpelling>Mary</standardSpelling>
 <lemmata>Mary</lemmata>
 <partsOfSpeech>np1</partsOfSpeech>
 </adornedWord>
 <adornedWord>
 <token>went</token>
 <spelling>went</spelling>
 <standardSpelling>went</standardSpelling>
 <lemmata>go</lemmata>
 <partsOfSpeech>vvd</partsOfSpeech>
 </adornedWord>
 <adornedWord>
 <token>,</token>
 <spelling>,</spelling>
 <standardSpelling>,</standardSpelling>
 <lemmata>,</lemmata>
 <partsOfSpeech>,</partsOfSpeech>
 </adornedWord>
 <adornedWord>
 <token>the</token>
 <spelling>the</spelling>
 <standardSpelling>the</standardSpelling>
 <lemmata>the</lemmata>
 <partsOfSpeech>dt</partsOfSpeech>
 </adornedWord>

10/01/13 MorphAdorner Page 225

 <adornedWord>
 <token>lamb</token>
 <spelling>lamb</spelling>
 <standardSpelling>lamb</standardSpelling>
 <lemmata>lamb</lemmata>
 <partsOfSpeech>n1</partsOfSpeech>
 </adornedWord>
 <adornedWord>
 <token>was</token>
 <spelling>was</spelling>
 <standardSpelling>was</standardSpelling>
 <lemmata>be</lemmata>
 <partsOfSpeech>vbds</partsOfSpeech>
 </adornedWord>
 <adornedWord>
 <token>sure</token>
 <spelling>sure</spelling>
 <standardSpelling>sure</standardSpelling>
 <lemmata>sure</lemmata>
 <partsOfSpeech>j</partsOfSpeech>
 </adornedWord>
 <adornedWord>
 <token>to</token>
 <spelling>to</spelling>
 <standardSpelling>to</standardSpelling>
 <lemmata>to</lemmata>
 <partsOfSpeech>pc-acp</partsOfSpeech>
 </adornedWord>
 <adornedWord>
 <token>go</token>
 <spelling>go</spelling>
 <standardSpelling>go</standardSpelling>
 <lemmata>go</lemmata>
 <partsOfSpeech>vvi</partsOfSpeech>
 </adornedWord>
 <adornedWord>
 <token>.</token>
 <spelling>.</spelling>
 <standardSpelling>.</standardSpelling>
 <lemmata>.</lemmata>
 <partsOfSpeech>.</partsOfSpeech>
 </adornedWord>
 </adornedSentence>
 </adornedSentences>
 <outputTEI>false</outputTEI>
 <outputReg>false</outputReg>
 <outputTCF>false</outputTCF>
</PartOfSpeechTaggerResult>

HTML output (source)

<h3>26 words in 2 sentences found.
</h3>
<table border="0">
<tbody><tr>
<th align="left">S#</th><th align="left">W#</th><th align="left">Spelling</th><th

10/01/13 MorphAdorner Page 226

align="left">Pos</th><th align="left">Standard</th><th align="left">Lemma</th></tr>
<tr><td>1</td><td>1</td><td>Mary</td><td>np1</td><td>Mary</td><td>Mary</td></tr>
<tr><td>1</td><td>2</td><td>had</td><td>vhd</td><td>had</td><td>have</td></tr>
<tr><td>1</td><td>3</td><td>a</td><td>dt</td><td>a</td><td>a</td></tr>
<tr><td>1</td><td>4</td><td>little</td><td>j</td><td>little</td><td>little</td></tr
>
<tr><td>1</td><td>5</td><td>lamb</td><td>n1</td><td>lamb</td><td>lamb</td></tr>
<tr><td>1</td><td>6</td><td>,</td><td>,</td><td>,</td><td>,</td></tr>
<tr><td>1</td><td>7</td><td>whose</td><td>r-crq</td><td>whose</td><td>who</td></tr>
<tr><td>1</td><td>8</td><td>fleece</td><td>n1</td><td>fleece</td><td>fleece</td></t
r>
<tr><td>1</td><td>9</td><td>was</td><td>vbds</td><td>was</td><td>be</td></tr>
<tr><td>1</td><td>10</td><td>white</td><td>j-
jn</td><td>white</td><td>white</td></tr>
<tr><td>1</td><td>11</td><td>as</td><td>c-acp</td><td>as</td><td>as</td></tr>
<tr><td>1</td><td>12</td><td>snow</td><td>n1</td><td>snow</td><td>snow</td></tr>
<tr><td>1</td><td>13</td><td>.</td><td>.</td><td>.</td><td>.</td></tr>
<tr><td>2</td><td>1</td><td>And</td><td>cc</td><td>And</td><td>and</td></tr>
<tr><td>2</td><td>2</td><td>everywhere</td><td>av</td><td>everywhere</td><td>everyw
here</td></tr>
<tr><td>2</td><td>3</td><td>that</td><td>cst</td><td>that</td><td>that</td></tr>
<tr><td>2</td><td>4</td><td>Mary</td><td>np1</td><td>Mary</td><td>Mary</td></tr>
<tr><td>2</td><td>5</td><td>went</td><td>vvd</td><td>went</td><td>go</td></tr>
<tr><td>2</td><td>6</td><td>,</td><td>,</td><td>,</td><td>,</td></tr>
<tr><td>2</td><td>7</td><td>the</td><td>dt</td><td>the</td><td>the</td></tr>
<tr><td>2</td><td>8</td><td>lamb</td><td>n1</td><td>lamb</td><td>lamb</td></tr>
<tr><td>2</td><td>9</td><td>was</td><td>vbds</td><td>was</td><td>be</td></tr>
<tr><td>2</td><td>10</td><td>sure</td><td>j</td><td>sure</td><td>sure</td></tr>
<tr><td>2</td><td>11</td><td>to</td><td>pc-acp</td><td>to</td><td>to</td></tr>
<tr><td>2</td><td>12</td><td>go</td><td>vvi</td><td>go</td><td>go</td></tr>
<tr><td>2</td><td>13</td><td>.</td><td>.</td><td>.</td><td>.</td></tr>
</tbody>
</table>

HTML output (display)

26 words in 2 sentences found.

S# W# Spelling Pos Standard Lemma
1 1 Mary np1 Mary Mary
1 2 had vhd had have
1 3 a dt a a
1 4 little j little little
1 5 lamb n1 lamb lamb
1 6 , , , ,
1 7 whose r-crq whose who
1 8 fleece n1 fleece fleece
1 9 was vbds was be
1 10 white j-jn white white
1 11 as c-acp as as

10/01/13 MorphAdorner Page 227

1 12 snow n1 snow snow
1 13
2 1 And cc And and
2 2 everywhere av everywhere everywhere
2 3 that cst that that
2 4 Mary np1 Mary Mary
2 5 went vvd went go
2 6 , , , ,
2 7 the dt the the
2 8 lamb n1 lamb lamb
2 9 was vbds was be
2 10 sure j sure sure
2 11 to pc-acp to to
2 12 go vvi go go
2 13

Text output

26 words in 2 sentences found.
S# W# Spelling Pos Standard Lemma
1 1 Mary np1 Mary Mary
1 2 had vhd had have
1 3 a dt a a
1 4 little j little little
1 5 lamb n1 lamb lamb
1 6 , , , ,
1 7 whose r-crq whose who
1 8 fleece n1 fleece fleece
1 9 was vbds was be
1 10 white j-jn white white
1 11 as c-acp as as
1 12 snow n1 snow snow
1 13
2 1 And cc And and
2 2 everywhere av everywhere everywhere
2 3 that cst that that
2 4 Mary np1 Mary Mary
2 5 went vvd went go
2 6 , , , ,
2 7 the dt the the
2 8 lamb n1 lamb lamb
2 9 was vbds was be
2 10 sure j sure sure
2 11 to pc-acp to to
2 12 go vvi go go
2 13 . . .

10/01/13 MorphAdorner Page 228

MorphAdorner Server Services: CorpusConfig Service
Service name: corpusconfig

Service description: List available corpus configurations.

HTTP methods
allowed:

GET, POST, OPTIONS

POST accepts as
input:

application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 media Result format. One of json, xml, html, text .

Sample POST form
<form accept-charset="UTF-8" method="post" action="corpusconfig"
 target="_blank"
 name="corpusconfig">
<table cellpadding="0" cellspacing="5">
<tr>
<td valign="top">
Results format:
</td>
<td>
<input type="radio" name="media" value="json">JSON format</input>

<input type="radio" name="media" value="xml" checked="checked">XML
format</input>

<input type="radio" name="media" value="html">HTML format</input>

<input type="radio" name="media" value="text">Text format</input>
</td>
</tr>
<tr>
<td>
<input type="submit" name="corpusconfig" value="Get configurations" />
</td>
</tr>
<tr>
</table>
</form>

Output

Here is sample corpus configuration output for the default set of configurations distributed with the
MorphAdorner Server. In the JSON and XML output formats, the CorpusConfigResult contains a list of
CorpusConfigInfo objects wrapped by a corpusConfigs container. Each CorpusConfigInfo object
provides the name and description of a corpus configuration made available by the server. The HTML
and text versions provide the same information in formats suitable for display.

10/01/13 MorphAdorner Page 229

JSON output

{
 "CorpusConfigResult": {
 "corpusConfigs": [
 {
 "CorpusConfigInfo": [
 {
 "name": "ece",
 "description": "Eighteenth Century English"
 },
 {
 "name": "eme",
 "description": "Early Modern English (~1475 to 1700)"
 },
 {
 "name": "ncf",
 "description": "Nineteeth Century British Fiction"
 }
]
 }
]
 }
}

XML output

<CorpusConfigResult>
 <corpusConfigs>
 <CorpusConfigInfo>
 <name>ece</name>
 <description>Eighteenth Century English</description>
 </CorpusConfigInfo>
 <CorpusConfigInfo>
 <name>eme</name>
 <description>Early Modern English (~1475 to 1700)</description>
 </CorpusConfigInfo>
 <CorpusConfigInfo>
 <name>ncf</name>
 <description>Nineteeth Century British Fiction</description>
 </CorpusConfigInfo>
 </corpusConfigs>
</CorpusConfigResult>

HTML output (source)

<h3>3 corpus configurations found.</h3>
<table border="0">
<tr>
<th align="left">Name</th>
<th align="left">Description</th>
</tr>
<tr>
<td valign="top" align="left">ece</td>
<td valign="top" align="left">Eighteenth Century English</td>
</tr>

10/01/13 MorphAdorner Page 230

<tr>
<td valign="top" align="left">eme</td>
<td valign="top" align="left">Early Modern English (~1475 to 1700)</td>
</tr>
<tr>
<td valign="top" align="left">ncf</td>
<td valign="top" align="left">Nineteeth Century British Fiction</td>
</tr>
</table>

HTML output (display)

3 corpus configurations found.

Name Description
ece Eighteenth Century English
eme Early Modern English (~1475 to 1700)
ncf Nineteeth Century British Fiction

Text output

3 corpus configurations found.
Name Description
ece Eighteenth Century English
eme Early Modern English (~1475 to 1700)
ncf Nineteeth Century British Fiction

10/01/13 MorphAdorner Page 231

MorphAdorner Server Services: Gap Filler Service
Service name: gapfiller

Service description: Finds potential words matching a word containing missing characters.

HTTP methods
allowed:

GET, POST, OPTIONS

POST accepts as
input:

application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 corpusConfig
Corpus configuration name. In the standard distribution these are ece, eme,
and ncf.

 media Result format. One of json, xml, html, text .

 spelling Spelling of a word.

Sample POST form
<form accept-charset="UTF-8" method="post" action="gapfiller"
 target="_blank"
 name="gapfiller">
<table cellpadding="0" cellspacing="5">
<tr>
<td>Spelling:</td>
<td><input type="text" name="spelling" size="20" value="" /></td>
</tr>
<tr>
<td valign="top">

Lexicon:
</td>
<td>
<input type="radio" name="corpusConfig" value="eme">Early Modern English</input>

<input type="radio" name="corpusConfig" value="ece">Eighteen Century
English</input>

<input type="radio" name="corpusConfig" value="ncf" checked="checked">Nineteenth
Century Fiction</input>
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>

10/01/13 MorphAdorner Page 232

<td valign="top">
Results format:
</td>
<td>
<input type="radio" name="media" value="json">JSON format</input>

<input type="radio" name="media" value="xml" checked="checked">XML
format</input>

<input type="radio" name="media" value="html">HTML format</input>

<input type="radio" name="media" value="text">Text format</input>
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td>
<input type="submit" name="fillgaps" value="Fill gaps" />
</td>
</tr>
</table>
</form>

Output

Here is sample output for the partial word "re?ate" where the "?" indicates an unknown character. We
use the eme (Early Modern English) lexicon to locate potential matches. You may also use the Unicode
black circle character \u25cf to specify a gap character. The output uses the black circle to display gap
characters even when a "?" is used in the input word.

In the JSON and XML output formats, the GapFillerResult echoes the input spelling (with the "?"
replaced by the Unicode black circle character \u25cf) and the corpusConfig name. The suggestions
container wraps a list of suggestion entries, each of which is a single suggested gap-filled spelling. The
HTML and text versions provide just these suggestions in a format suitable for display.

JSON output

{
 "GapFillerResult": {
 "spelling": "re●ate",
 "corpusConfig": "eme",
 "suggestions": [
 {
 "suggestion": [
 "rebate",
 "relate",
 "renate"
]
 }
]
 }

10/01/13 MorphAdorner Page 233

}

XML output

<GapFillerResult>
 <spelling>re●ate</spelling>
 <corpusConfig>eme</corpusConfig>
 <suggestions>
 <suggestion>rebate</suggestion>
 <suggestion>relate</suggestion>
 <suggestion>renate</suggestion>
 </suggestions>
</GapFillerResult>

HTML output (source)

<h3>3 suggestions found.</h3>
<table border="0">
<tr>
<td valign="top" align="left">rebate</td>
</tr>
<tr>
<td valign="top" align="left">relate</td>
</tr>
<tr>
<td valign="top" align="left">renate</td>
</tr>
</table>

HTML output (display)

3 suggestions found.

rebate
relate
renate

Text output

3 suggestions found.
rebate
relate
renate

10/01/13 MorphAdorner Page 234

MorphAdorner Server Services: Hyphenator Service
Service name: hyphenator

Service description: Hyphenate a spelling.

HTTP methods
allowed:

GET, POST, OPTIONS

POST accepts as
input:

application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 media Result format. One of json, xml, html, text .

 spelling Spelling of a word.

Sample POST form
<form accept-charset="UTF-8" method="post" action="hyphenator"
 target="_blank"
 name="hyphenator">
<table cellpadding="0" cellspacing="5">
<tr>
<td>Spelling:</td>
<td><input type="text" name="spelling" size="20" value="" /></td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td valign="top">
Results format:
</td>
<td>
<input type="radio" name="media" value="json">JSON format</input>

<input type="radio" name="media" value="xml" checked="checked">XML
format</input>

<input type="radio" name="media" value="html">HTML format</input>

<input type="radio" name="media" value="text">Text format</input>
</td>
</tr>
<tr>
<td>

</td>

10/01/13 MorphAdorner Page 235

<td>

</td>
</tr>
<tr>
<td>
<input type="submit" name="hyphenate" value="Hyphenate" />
</td>
</tr>
</table>
</form>

Output

Here is sample hyphenated output for the spelling "coruscation." The JSON and XML formats echo the
input spelling and provide the hyphenated version of the spelling as hyphenatedSpelling. The HTML
and text versions provide the same information in a format suitable for display.

JSON output

{
 "HyphenatorResult": {
 "spelling": "coruscation",
 "hyphenatedSpelling": "co-rus-ca-tion"
 }
}

XML output

<HyphenatorResult>
 <spelling>coruscation</spelling>
 <hyphenatedSpelling>co-rus-ca-tion</hyphenatedSpelling>
</HyphenatorResult>

HTML output (source)

<h3>Hyphenation Results</h3>
<table border="0">
<tr>
<td valign="top" align="left">Spelling:</td>
<td valign="top" align="left">coruscation</td>
</tr>
<tr>
<td valign="top" align="left">Hyphenated spelling:</td>
<td valign="top" align="left">co-rus-ca-tion</td>
</tr>
</table>

10/01/13 MorphAdorner Page 236

HTML output (display)

Hyphenation Results

Spelling: coruscation
Hyphenated spelling: co-rus-ca-tion

Text output

Hyphenation Results
Spelling: coruscation
Hyphenated spelling: co-rus-ca-tion

10/01/13 MorphAdorner Page 237

MorphAdorner Server Services: Language Recognizer Service
Service name: languagerecognizer

Service description: Find probable languages for a text.

HTTP methods
allowed:

GET, POST, OPTIONS

POST accepts as
input:

application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 media Result format. One of json, xml, html, text .

 text Text to be processed.

 includeInputText
Allowed values are true to include the input text in the output and false to
not include the input text.

Sample POST form
<form accept-charset="UTF-8" method="post" action="languagerecognizer"
 target="_blank"
 name="languagerecognizer">
<table cellpadding="0" cellspacing="5">
<tr>
<td>Text:</td>
<td colspan="2">
<textarea name="text" rows="15" cols="76"></textarea>
</td>
</tr>
<tr>
<td> </td>
<td>
<input type="checkbox" name="includeInputText" value="true"
 checked="checked"/>
Include input text in results
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>

10/01/13 MorphAdorner Page 238

<td valign="top">
Results format:
</td>
<td>
<input type="radio" name="media" value="json">JSON format</input>

<input type="radio" name="media" value="xml" checked="checked">XML
format</input>

<input type="radio" name="media" value="html">HTML format</input>

<input type="radio" name="media" value="text">Text format</input>
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td colspan="2">
<input type="submit" name="recognize" value="Recognize" />
</td>
</tr>
</table>
</form>

Output

Here is sample language recognizer output for the traditional French song "Au claire de la lune." The
JSON and XML LanguageRecognizerResult objects echo the input text and provide the most probably
languages as a list of language entries with the ISO language code given as languageCode, the
displayable language name as languageName, and the language probability score as score. The HTML
and text versions do not echo the input text, and provide the languages and associated scores in a
format suitable for display.

Au clair de la lune
Mon ami Pierrot
Prête-moi ta plume
Pour écrire un mot
Ma chandelle est morte
Je n'ai plus de feu
Ouvre-moi ta porte
Pour l'amour de Dieu.

JSON output

{
 "LanguageRecognizerResult": {
 "text": "Au clair de la lune\r\nMon ami Pierrot\r\nPr\u00eate-moi ta
plume\r\nPour \u00e9crire un mot\r\nMa chandelle est morte\r\nJe n'ai plus de
feu\r\nOuvre-moi ta porte\r\nPour l'amour de Dieu.",
 "languages": [
 {

10/01/13 MorphAdorner Page 239

 "language": {
 "languageCode": "fr",
 "languageName": "French",
 "score": 0.99999693379
 }
 }
]
 }
}

XML output

<?xml version="1.0"?>
<LanguageRecognizerResult>
 <text>Au clair de la lune
 Mon ami Pierrot
 Prête-moi ta plume
 Pour écrire un mot
 Ma chandelle est morte
 Je n'ai plus de feu
 Ouvre-moi ta porte
 Pour l'amour de Dieu.</text>
 <languages>
 <language>
 <languageCode>fr</languageCode>
 <languageName>French</languageName>
 <score>0.9999969337900039</score>
 </language>
 </languages>
</LanguageRecognizerResult>

HTML output (source)

<h3>1 language identified.</h3>
<table border="0">
<tr>
<th align="left">Language</th>
<th align="left">Score</th>
</tr>
<tr>
<td valign="top" align="left">fr (French)</td>
<td valign="top" align="left">1.0000</td>
</tr>
</table>

HTML output (display)

1 language identified.

Language Score
fr (French) 1.0000

10/01/13 MorphAdorner Page 240

Text output

1 language identified.
Language Score
fr (French) 1.0000

10/01/13 MorphAdorner Page 241

MorphAdorner Server Services: Lemmatizer
Service name: lemmatizer

Service description: Find lemma form (dictionary headword) for a spelling.

HTTP methods allowed: GET, POST, OPTIONS

POST accepts as input: application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 corpusConfig
Corpus configuration name. In the standard distribution these are ece, eme,
and ncf.

 media Result format. One of json, xml, html, text .

 spelling Spelling of a word.

 standardize
Standardize (modernize) spelling before performing operation. Allowed
values are true to request spelling standardization and false to disallow
spelling standardization.

 wordClass
Primary word class. One of adjective, adverb, compound, conjunction,
infinitive-to, noun, noun-possessive, preposition, pronoun, pronoun-
possessive, pronoun-possessive-determiner, verb .

 wordClass2
Secondary word class. One of adjective, adverb, compound, conjunction,
infinitive-to, noun, noun-possessive, preposition, pronoun, pronoun-
possessive, pronoun-possessive-determiner, verb .

Sample POST form
<form accept-charset="UTF-8" method="post" action="lemmatizer"
 target="_blank"
 name="lemmatizer">
<table cellpadding="0" cellspacing="5">
<tr>
<td>Spelling:</td>
<td><input type="text" name="spelling" size="20" value="" /></td>
</tr>
<tr>
<td>
<td><input type="checkbox" name="standardize" value="true" checked="checked"
/>Standardize spelling</td>
</td>
<td> </td>
</tr>
<tr>
<td>Primary word class:</td>
<td>
<select name="wordClass">
<option value="" selected="selected"></option>

10/01/13 MorphAdorner Page 242

<option value="adjective">adjective</option>
<option value="adverb">adverb</option>
<option value="compound">compound</option>
<option value="conjunction">conjunction</option>
<option value="infinitive-to">infinitive-to</option>
<option value="noun">noun</option>
<option value="noun-possessive">noun-possessive</option>
<option value="preposition">preposition</option>
<option value="pronoun">pronoun</option>
<option value="pronoun-possessive">pronoun-possessive</option>
<option value="pronoun-possessive-determiner">pronoun-possessive-
determiner</option>
<option value="verb">verb</option>
</select>
</td>
</tr>
<tr>
<td>Secondary word class:</td>
<td>
<select name="wordClass2">
<option value="" selected="selected"></option>
<option value="adjective">adjective</option>
<option value="adverb">adverb</option>
<option value="compound">compound</option>
<option value="conjunction">conjunction</option>
<option value="infinitive-to">infinitive-to</option>
<option value="noun">noun</option>
<option value="noun-possessive">noun-possessive</option>
<option value="preposition">preposition</option>
<option value="pronoun">pronoun</option>
<option value="pronoun-possessive">pronoun-possessive</option>
<option value="pronoun-possessive-determiner">pronoun-possessive-
determiner</option>
<option value="verb">verb</option>
</select>
</td>
</tr>
<tr>
<td valign="top">

Lexicon:
</td>
<td>
<input type="radio" name="corpusConfig" value="eme">Early Modern English</input>

<input type="radio" name="corpusConfig" value="ece">Eighteen Century
English</input>

<input type="radio" name="corpusConfig" value="ncf" checked="checked">Nineteenth
Century Fiction</input>
</td>
</tr>
<tr>
<td>

</td>
<td>

10/01/13 MorphAdorner Page 243

</td>
</tr>
<tr>
<td valign="top">
Results format:
</td>
<td>
<input type="radio" name="media" value="json">JSON format</input>

<input type="radio" name="media" value="xml" checked="checked">XML
format</input>

<input type="radio" name="media" value="html">HTML format</input>

<input type="radio" name="media" value="text">Text format</input>
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td>
<input type="submit" name="lemmatize" value="Lemmatize" />
</td>
</tr>
</table>
</form>

Output

Here is sample output for spelling strykynge, using the eme (early modern English) corpus
configuration. We request spelling standardization and supply verb as the primary word class.

The JSON and XML formats echo the input spelling, the corpusConfig, the value of the standardize
settings, and the primary and secondary word classes wordClass and wordClass2 respectively. The
resulting standard spelling is emitted as standardSpelling and the resulting lemma form appears as
lemma. In addition, the Lancaster stemmer result appears in the lancasterStem output field, and the
Porter stemmer result appears in the porterStem output field. The input query parameter field values are
not emitted for the HTML or plain text output formats which are suitable for display.

JSON output

{
 "LemmatizerResult": {
 "spelling": "strykynge",
 "standardSpelling": "striking",
 "corpusConfig": "eme",
 "wordClass": "verb",
 "wordClass2": "",
 "lemma": "strike",
 "standardize": true,
 "lancasterStem": "strik",
 "porterStem": "strike"

10/01/13 MorphAdorner Page 244

 }
}

XML output

<LemmatizerResult>
 <spelling>strykynge</spelling>
 <standardSpelling>striking</standardSpelling>
 <corpusConfig>eme</corpusConfig>
 <wordClass>verb</wordClass>
 <wordClass2/>
 <lemma>strike</lemma>
 <standardize>true</standardize>
 <lancasterStem>strik</lancasterStem>
 <porterStem>strike</porterStem>
</LemmatizerResult>

HTML output (source)

<h3>Lemmatizer Results</h3>
<table border="0">
<tr>
<td valign="top" align="left">Lemma:</td>
<td valign="top" align="left">strike</td>
</tr>
<tr>
<td valign="top" align="left">Lancaster stem:</td>
<td valign="top" align="left">strik</td>
</tr>
<tr>
<td valign="top" align="left">Porter stem:</td>
<td valign="top" align="left">strike</td>
</tr>
</table>

HTML output (display)

Lemmatizer Results

Lemma: strike
Lancaster stem: strik
Porter stem: strike

Text output

Lemmatizer Results
Lemma: strike
Lancaster stem: strik
Porter stem: strike

10/01/13 MorphAdorner Page 245

MorphAdorner Server Services: Lexicon Lookup Service
Service name: lexiconlookup

Service description: Lookup spelling and related lemmata in a lexicon.

HTTP methods
allowed:

GET, POST, OPTIONS

POST accepts as
input:

application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 corpusConfig
Corpus configuration name. In the standard distribution these are ece, eme,
and ncf.

 media Result format. One of json, xml, html, text .

 spelling Spelling of a word.

Sample POST form
<form accept-charset="UTF-8" method="post" action="lexiconlookup"
 target="_blank"
 name="lexiconlookup">
<table cellpadding="0" cellspacing="5">
<tr>
<td>Spelling:</td>
<td><input type="text" name="spelling" size="20" value="" /></td>
</tr>
<tr>
<td valign="top">

Lexicon:
</td>
<td>
<input type="radio" name="corpusConfig" value="eme">Early Modern English</input>

<input type="radio" name="corpusConfig" value="ece">Eighteen Century
English</input>

<input type="radio" name="corpusConfig" value="ncf" checked="checked">Nineteenth
Century Fiction</input>
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>

10/01/13 MorphAdorner Page 246

<td valign="top">
Results format:
</td>
<td>
<input type="radio" name="media" value="json">JSON format</input>

<input type="radio" name="media" value="xml" checked="checked">XML
format</input>

<input type="radio" name="media" value="html">HTML format</input>

<input type="radio" name="media" value="text">Text format</input>
</td>
</tr>
<tr>
<td>
<input type="submit" name="lookup" value="Lookup" />
</td>
</tr>
</table>
</form>

Output

Here is sample output for the spelling "love" in the early modern English corpus (eme). The JSON and
XML LexiconLookupResult echoes the input spelling and corpusConfig values as well as a
LexiconEntry which provides the different part of speech counts for the lemmata associated with the
spelling "love". The output also displays other spellings in the lexicon which take the same lemma
forms as "love" as a list of relatedSpellings. The HTML and text versions provide the results in formats
suitable for display.

JSON output

{
 "LexiconLookupResult": {
 "spelling": "love",
 "corpusConfig": "eme",
 "lexiconEntry": {
 "entry": "love",
 "standardEntry": "love",
 "lemmata": [
 {
 "entry": [
 {
 "string": [
 "n1",
 "love"
]
 },
 {
 "string": [
 "vvb",
 "love"
]
 },
 {
 "string": [
 "np1-n",

10/01/13 MorphAdorner Page 247

 "love"
]
 },
 {
 "string": [
 "vvi",
 "love"
]
 }
]
 }
],
 "entryCount": 24180,
 "categoriesAndCounts": [
 {
 "entry": [
 {
 "string": "n1",
 "MutableInteger": {
 "mutableInteger": 16227
 }
 },
 {
 "string": "vvb",
 "MutableInteger": {
 "mutableInteger": 4469
 }
 },
 {
 "string": "np1-n",
 "MutableInteger": {
 "mutableInteger": 5
 }
 },
 {
 "string": "vvi",
 "MutableInteger": {
 "mutableInteger": 3479
 }
 }
]
 }
],
 "largestCategory": "n1",
 "largestCategoryCount": 16227
 },
 "relatedSpellings": [
 {
 "relatedSpelling": [
 "vnlou'd",
 "lou'd",
 "lous",
 "louingest",
 "love's",
 "louingly",
 "lovingest",
 "lou's",

10/01/13 MorphAdorner Page 248

 "loveth",
 "lovd",
 "Loved",
 "lov'd",
 "{love}",
 "Lou'dst",
 "lub",
 "loues",
 "lov'dst",
 "Loued",
 "louingle",
 "loves",
 "loou'st",
 "lov'de",
 "Loves",
 "loueth",
 "lovingly",
 "lovest",
 "Loving",
 "Lov's",
 "Louing",
 "lovedst",
 "Lov'd",
 "unloved",
 "loving",
 "Lou's",
 "Loues",
 "loue",
 "lovedest",
 "Lou'd",
 "louing",
 "louiug",
 "lovingst",
 "Love",
 "Lov'st",
 "louedst",
 "lovinglie",
 "lcue",
 "louest",
 "lovst",
 "loust",
 "louinglie",
 "LOVES",
 "Loue",
 "lovinge",
 "lo'd",
 "lou`d",
 "louyng",
 "love-a",
 "loued",
 "LOVE",
 "lou'st",
 "loue'd",
 "louinge",
 "lovings",
 "lou'dst",
 "loved",

10/01/13 MorphAdorner Page 249

 "louynge",
 "louen",
 "lou'de",
 "louingst",
 "lovesto",
 "lovea",
 "LOue",
 "loy'st",
 "lov'st"
]
 }
]
 }
}

XML output

<LexiconLookupResult>
 <spelling>love</spelling>
 <corpusConfig>eme</corpusConfig>
 <lexiconEntry>
 <entry>love</entry>
 <standardEntry>love</standardEntry>
 <lemmata>
 <entry>
 <string>n1</string>
 <string>love</string>
 </entry>
 <entry>
 <string>vvb</string>
 <string>love</string>
 </entry>
 <entry>
 <string>np1-n</string>
 <string>love</string>
 </entry>
 <entry>
 <string>vvi</string>
 <string>love</string>
 </entry>
 </lemmata>
 <entryCount>24180</entryCount>
 <categoriesAndCounts>
 <entry>
 <string>n1</string>
 <MutableInteger>
 <mutableInteger>16227</mutableInteger>
 </MutableInteger>
 </entry>
 <entry>
 <string>vvb</string>
 <MutableInteger>
 <mutableInteger>4469</mutableInteger>
 </MutableInteger>
 </entry>
 <entry>

10/01/13 MorphAdorner Page 250

 <string>np1-n</string>
 <MutableInteger>
 <mutableInteger>5</mutableInteger>
 </MutableInteger>
 </entry>
 <entry>
 <string>vvi</string>
 <MutableInteger>
 <mutableInteger>3479</mutableInteger>
 </MutableInteger>
 </entry>
 </categoriesAndCounts>
 <largestCategory>n1</largestCategory>
 <largestCategoryCount>16227</largestCategoryCount>
 </lexiconEntry>
 <relatedSpellings>
 <relatedSpelling>vnlou'd</relatedSpelling>
 <relatedSpelling>lou'd</relatedSpelling>
 <relatedSpelling>lous</relatedSpelling>
 <relatedSpelling>louingest</relatedSpelling>
 <relatedSpelling>love's</relatedSpelling>
 <relatedSpelling>louingly</relatedSpelling>
 <relatedSpelling>lovingest</relatedSpelling>
 <relatedSpelling>lou's</relatedSpelling>
 <relatedSpelling>loveth</relatedSpelling>
 <relatedSpelling>lovd</relatedSpelling>
 <relatedSpelling>Loved</relatedSpelling>
 <relatedSpelling>lov'd</relatedSpelling>
 <relatedSpelling>{love}</relatedSpelling>
 <relatedSpelling>Lou'dst</relatedSpelling>
 <relatedSpelling>lub</relatedSpelling>
 <relatedSpelling>loues</relatedSpelling>
 <relatedSpelling>lov'dst</relatedSpelling>
 <relatedSpelling>Loued</relatedSpelling>
 <relatedSpelling>louingle</relatedSpelling>
 <relatedSpelling>loves</relatedSpelling>
 <relatedSpelling>loou'st</relatedSpelling>
 <relatedSpelling>lov'de</relatedSpelling>
 <relatedSpelling>Loves</relatedSpelling>
 <relatedSpelling>loueth</relatedSpelling>
 <relatedSpelling>lovingly</relatedSpelling>
 <relatedSpelling>lovest</relatedSpelling>
 <relatedSpelling>Loving</relatedSpelling>
 <relatedSpelling>Lov's</relatedSpelling>
 <relatedSpelling>Louing</relatedSpelling>
 <relatedSpelling>lovedst</relatedSpelling>
 <relatedSpelling>Lov'd</relatedSpelling>
 <relatedSpelling>unloved</relatedSpelling>
 <relatedSpelling>loving</relatedSpelling>
 <relatedSpelling>Lou's</relatedSpelling>
 <relatedSpelling>Loues</relatedSpelling>
 <relatedSpelling>loue</relatedSpelling>
 <relatedSpelling>lovedest</relatedSpelling>
 <relatedSpelling>Lou'd</relatedSpelling>
 <relatedSpelling>louing</relatedSpelling>
 <relatedSpelling>louiug</relatedSpelling>
 <relatedSpelling>lovingst</relatedSpelling>

10/01/13 MorphAdorner Page 251

 <relatedSpelling>Love</relatedSpelling>
 <relatedSpelling>Lov'st</relatedSpelling>
 <relatedSpelling>louedst</relatedSpelling>
 <relatedSpelling>lovinglie</relatedSpelling>
 <relatedSpelling>lcue</relatedSpelling>
 <relatedSpelling>louest</relatedSpelling>
 <relatedSpelling>lovst</relatedSpelling>
 <relatedSpelling>loust</relatedSpelling>
 <relatedSpelling>louinglie</relatedSpelling>
 <relatedSpelling>LOVES</relatedSpelling>
 <relatedSpelling>Loue</relatedSpelling>
 <relatedSpelling>lovinge</relatedSpelling>
 <relatedSpelling>lo'd</relatedSpelling>
 <relatedSpelling>lou`d</relatedSpelling>
 <relatedSpelling>louyng</relatedSpelling>
 <relatedSpelling>love-a</relatedSpelling>
 <relatedSpelling>loued</relatedSpelling>
 <relatedSpelling>LOVE</relatedSpelling>
 <relatedSpelling>lou'st</relatedSpelling>
 <relatedSpelling>loue'd</relatedSpelling>
 <relatedSpelling>louinge</relatedSpelling>
 <relatedSpelling>lovings</relatedSpelling>
 <relatedSpelling>lou'dst</relatedSpelling>
 <relatedSpelling>loved</relatedSpelling>
 <relatedSpelling>louynge</relatedSpelling>
 <relatedSpelling>louen</relatedSpelling>
 <relatedSpelling>lou'de</relatedSpelling>
 <relatedSpelling>louingst</relatedSpelling>
 <relatedSpelling>lovesto</relatedSpelling>
 <relatedSpelling>lovea</relatedSpelling>
 <relatedSpelling>LOue</relatedSpelling>
 <relatedSpelling>loy'st</relatedSpelling>
 <relatedSpelling>lov'st</relatedSpelling>
 </relatedSpellings>
</LexiconLookupResult>

HTML output (source)

<h3>love appears 24,180 times in the eme corpus training data.</h3>
<table border="0">
<tr>
<th align="left">Part of Speech</th>
<th align="left">Lemma</th>
<th align="left">Count</th>
</tr>
<tr>
<td valign="top" align="left">n1</td>
<td valign="top" align="left">love</td>
<td valign="top" align="left">16,227</td>
</tr>
<tr>
<td valign="top" align="left">vvb</td>
<td valign="top" align="left">love</td>
<td valign="top" align="left">4,469</td>
</tr>
<tr>

10/01/13 MorphAdorner Page 252

<td valign="top" align="left">np1-n</td>
<td valign="top" align="left">love</td>
<td valign="top" align="left">5</td>
</tr>
<tr>
<td valign="top" align="left">vvi</td>
<td valign="top" align="left">love</td>
<td valign="top" align="left">3,479</td>
</tr>
</table>
<table border="0">
<tr>
<th align="left">Related spellings:</th>
</tr>
<tr>
<td valign="top" align="left">vnlou'd, lou'd, lous, louingest, love's, louingly,
lovingest, lou's, loveth, lovd, Loved, lov'd, {love}, Lou'dst, lub, loues, lov'dst,
Loued, louingle, loves, loou'st, lov'de, Loves, loueth, lovingly, lovest, Loving,
Lov's, Louing, lovedst, Lov'd, unloved, loving, Lou's, Loues, loue, lovedest,
Lou'd, louing, louiug, lovingst, Love, Lov'st, louedst, lovinglie, lcue, louest,
lovst, loust, louinglie, LOVES, Loue, lovinge, lo'd, lou`d, louyng, love-a, loued,
LOVE, lou'st, loue'd, louinge, lovings, lou'dst, loved, louynge, louen, lou'de,
louingst, lovesto, lovea, LOue, loy'st, lov'st</td>
</tr>
</table>

HTML output (display)

love appears 24,180 times in the eme corpus training data.

Part of Speech Lemma Count
n1 love 16,227
vvb love 4,469
np1-n love 5
vvi love 3,479
Related spellings:
vnlou'd, lou'd, lous, louingest, love's, louingly, lovingest, lou's, loveth, lovd, Loved, lov'd, {love},
Lou'dst, lub, loues, lov'dst, Loued, louingle, loves, loou'st, lov'de, Loves, loueth, lovingly, lovest,
Loving, Lov's, Louing, lovedst, Lov'd, unloved, loving, Lou's, Loues, loue, lovedest, Lou'd, louing,
louiug, lovingst, Love, Lov'st, louedst, lovinglie, lcue, louest, lovst, loust, louinglie, LOVES, Loue,
lovinge, lo'd, lou`d, louyng, love-a, loued, LOVE, lou'st, loue'd, louinge, lovings, lou'dst, loved,
louynge, louen, lou'de, louingst, lovesto, lovea, LOue, loy'st, lov'st

10/01/13 MorphAdorner Page 253

Text output

love appears 24,180 times in the eme corpus training data.
Part of Speech Lemma Count
n1 love 16,227
vvb love 4,469
np1-n love 5
vvi love 3,479
Related spellings:
vnlou'd, lou'd, lous, louingest, love's, louingly, lovingest,
lou's, loveth, lovd, Loved, lov'd, {love}, Lou'dst, lub, loues,
lov'dst, Loued, louingle, loves, loou'st, lov'de, Loves, loueth,
lovingly, lovest, Loving, Lov's, Louing, lovedst, Lov'd,
unloved, loving, Lou's, Loues, loue, lovedest, Lou'd, louing,
louiug, lovingst, Love, Lov'st, louedst, lovinglie, lcue,
louest, lovst, loust, louinglie, LOVES, Loue, lovinge, lo'd,
lou`d, louyng, love-a, loued, LOVE, lou'st, loue'd, louinge,
lovings, lou'dst, loved, louynge, louen, lou'de, louingst,
lovesto, lovea, LOue, loy'st, lov'st

10/01/13 MorphAdorner Page 254

MorphAdorner Server Services: Name Recognizer Service
Service name: namerecognizer

Service description: Recognize names and places in text.

HTTP methods
allowed:

GET, POST, OPTIONS

POST accepts as
input:

application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 corpusConfig
Corpus configuration name. In the standard distribution these are ece, eme,
and ncf.

 includeInputText
Allowed values are true to include the input text in the output and false to
not include the input text.

 media Result format. One of json, xml, html, text .

 text Text to be processed.

Sample POST form
<form accept-charset="UTF-8" method="post" action="namerecognizer"
 target="_blank"
 name="namerecognizer">
<table cellpadding="0" cellspacing="5">
<tr>
<td>Text:</td>
<td colspan="2">
<textarea name="text" rows="15" cols="76"></textarea>
</td>
</tr>
<tr>
<td valign="top">

Lexicon:
</td>
<td>
<input type="radio" name="corpusConfig" value="eme">Early Modern English</input>

<input type="radio" name="corpusConfig" value="ece">Eighteen Century
English</input>

<input type="radio" name="corpusConfig" value="ncf" checked="checked">Nineteenth
Century Fiction</input>
</td>
</tr>
<tr>
<td> </td>
<td>
<input type="checkbox" name="includeInputText" value="true"

10/01/13 MorphAdorner Page 255

 checked="checked"/>
Include input text in results
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td valign="top">
Results format:
</td>
<td>
<input type="radio" name="media" value="json">JSON format</input>

<input type="radio" name="media" value="xml" checked="checked">XML
format</input>

<input type="radio" name="media" value="html">HTML format</input>

<input type="radio" name="media" value="text">Text format</input>
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td colspan="2">
<input type="submit" name="getnames" value="Get names" />
</td>
</tr>
</table>
</form>

Output

We look for names in the following short section of text taken from a Northwestern University web
page discussing the early history of the University.

In 1853, the founders purchased a 379-acre tract of land on the shore of Lake Michigan 12
miles north of Chicago. They established a campus and developed the land near it, naming
the surrounding town Evanston in honor of one of the University's founders, John Evans.
After completing its first building in 1855, Northwestern began classes that fall with two
faculty members and 10 students.

The JSON and XML NameRecognizerResult echoes the input text. The HTML and text versions
provide displayable versions of the name and place lists. Note that the implementation is rather
primitive and frequently fails to distinguish names from places.

10/01/13 MorphAdorner Page 256

JSON output

{
 "NameRecognizerResult": {
 "text": "In 1853, the founders purchased a 379-acre tract of land on the shore
of Lake Michigan 12 miles north of Chicago. They established a campus and
developed the land near it, naming the surrounding town Evanston in honor of one
of the University's founders, John Evans. After completing its first building in
1855, Northwestern began classes that fall with two faculty members and 10
students.",
 "corpusConfig": "ncf",
 "personNames": [
 {
 "@class": "tree-set",
 "personName": [
 "John Evans",
 "Lake Michigan",
 "Northwestern"
]
 }
],
 "placeNames": [
 {
 "@class": "tree-set",
 "placeName": [
 "Chicago",
 "Evanston"
]
 }
]
 }
}

XML output

<NameRecognizerResult>
 <text>In 1853, the founders purchased a 379-acre tract of land on the shore of
Lake Michigan 12 miles north of Chicago. They established a campus and developed
the land near it, naming the surrounding town Evanston in honor of one of the
University's founders, John Evans. After completing its first building in 1855,
Northwestern began classes that fall with two faculty members and 10
students.</text>
 <corpusConfig>ncf</corpusConfig>
 <personNames class="tree-set">
 <personName>John Evans</personName>
 <personName>Lake Michigan</personName>
 <personName>Northwestern</personName>
 </personNames>
 <placeNames class="tree-set">
 <placeName>Chicago</placeName>
 <placeName>Evanston</placeName>
 </placeNames>
</NameRecognizerResult>

10/01/13 MorphAdorner Page 257

HTML output (source)

<h3>
3 person names found.
</h3>
<table border="0">
<tr><td>John Evans</td></tr>
<tr><td>Lake Michigan</td></tr>
<tr><td>Northwestern</td></tr>
</table>
<h3>
2 place names found.
</h3>
<table border="0">
<tr><td>Chicago</td></tr>
<tr><td>Evanston</td></tr>
</table>

HTML output (display)

3 person names found.

John Evans
Lake Michigan
Northwestern

2 place names found.

Chicago
Evanston

Text output

3 person names found.
John Evans
Lake Michigan
Northwestern
2 place names found.
Chicago
Evanston

10/01/13 MorphAdorner Page 258

MorphAdorner Server Services: Noun Pluralizer Service
Service name: pluralizer

Service description: Find plural forms of nouns and pronouns.

HTTP methods
allowed:

GET, POST, OPTIONS

POST accepts as
input:

application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 american
Display American (U.S.) spellings of plural forms. Allowed values are true to
display American spellings, false for British spellings.

 media Result format. One of json, xml, html, text .

 spelling Spelling of a word.

Sample POST form

The pluralizer service accepts a singular noun or pronoun and returns the plural form. An option allows
for returning American plural forms instead of British plurals.

<form accept-charset="UTF-8" method="post" action="pluralizer"
 target="_blank"
 name="pluralizer">
<table cellpadding="0" cellspacing="5">
<tr>
<td>Singular Noun:</td>
<td><input type="text" name="singular" size = "20" value="" /></td>
</tr>
<tr>
<td> </td>
<td>
<input type="checkbox" name="american" value="true" />
American spellings
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td valign="top">
Results format:
</td>
<td>

10/01/13 MorphAdorner Page 259

<input type="radio" name="media" value="json">JSON format</input>

<input type="radio" name="media" value="xml" checked="checked">XML
format</input>

<input type="radio" name="media" value="html">HTML format</input>

<input type="radio" name="media" value="text">Text format</input>
</td>
</tr>
<tr>
<td>
<input type="submit" name="pluralize" value="Pluralize" />
</td>
</tr>
</table>
</form>

Output

Here we use the pluralizer service to find the plural of the noun "mouse."

JSON output

{
 "PluralizerResult": {
 "singular": "mouse",
 "plural": "mice",
 "american": false
 }
}

XML output

<PluralizerResult>
 <singular>mouse</singular>
 <plural>mice</plural>
 <american>false</american>
</PluralizerResult>

HTML output (source)

<h3>Pluralizer results</h3>
<table border="0">
<tbody><tr>
<td align="left" valign="top">Singular:</td>
<td align="left" valign="top">mouse</td>
</tr>
<tr>
<td align="left" valign="top">Plural:</td>
<td align="left" valign="top">mice</td>
</tr>
<tr>
<td align="left" valign="top">American:</td>
<td align="left" valign="top">false</td>
</tr>
</tbody>
</table>

10/01/13 MorphAdorner Page 260

HTML output (display)

Pluralizer results

Singular: mouse
Plural: mice
American: false

Text output

Pluralizer results
Singular: mouse
Plural: mice
American: false

10/01/13 MorphAdorner Page 261

MorphAdorner Server Services: Parser Service
Service name: parser

Service description: Parse sentences using Link Grammar Parser.

HTTP methods
allowed:

GET, POST, OPTIONS

POST accepts as
input:

application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 media Result format. One of json, xml, html, text .

 text Text to be processed.

 includeInputText
Allowed values are true to include the input text in the output and false to
not include the input text.

Sample POST form
<form accept-charset="UTF-8" method="post" action="parser"
 target="_blank"
 name="parser">
<table cellpadding="0" cellspacing="5">
<tr>
<td>Text:</td>
<td colspan="2">
<textarea name="text" rows="15" cols="76"></textarea>
</td>
</tr>
<tr>
<td> </td>
<td>
<input type="checkbox" name="includeInputText" value="true"
 checked="checked"/>
Include input text in results
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td valign="top">
Results format:
</td>
<td>

10/01/13 MorphAdorner Page 262

<input type="radio" name="media" value="json">JSON format</input>

<input type="radio" name="media" value="xml" checked="checked">XML
format</input>

<input type="radio" name="media" value="html">HTML format</input>

<input type="radio" name="media" value="text">Text format</input>
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td colspan="2">
<input type="submit" name="parse" value="Parse" />
</td>
</tr>
</table>
</form>

Output

Here is sample parser output for the sentence "Mary had a little lamb."

JSON output

{
 "ParserResult": {
 "text": "Mary had a little lamb.",
 "parsedText": "\n +---------------Xp---------------+\n |
+-------Os------+ |\n +---Wd--+-Ss-+ +IDDC+--Dmu-+ |\n | | |
| | | |\nLEFT-WALL Mary had.v a little lamb.n . \n\n\n LEFT-WALL Xp
<---Xp----> Xp . \n(m) LEFT-WALL Wd <---Wd----> Wd Mary
\n(m) Mary Ss <---Ss----> S had.v \n(m) had.v O <---
Os----> Os lamb.n \n(m) little Dmu <---Dmu---> D*u
lamb.n \n(m) a IDDC <---IDDC--> IDDC little \n .
RW <---RW----> RW RIGHT-WALL \n"
 }
}

XML output

<ParserResult>
<text>Mary had a little lamb.</text>
<parsedText>
 +---------------Xp---------------+
 | +-------Os------+ |
 +---Wd--+-Ss-+ +IDDC+--Dmu-+ |
 | | | | | | |
LEFT-WALL Mary had.v a little lamb.n .
 LEFT-WALL Xp <---Xp----> Xp .
(m) LEFT-WALL Wd <---Wd----> Wd Mary
(m) Mary Ss <---Ss----> S had.v

10/01/13 MorphAdorner Page 263

(m) had.v O <---Os----> Os lamb.n
(m) little Dmu <---Dmu---> D*u lamb.n
(m) a IDDC <---IDDC--> IDDC little
 . RW <---RW----> RW RIGHT-WALL
</parsedText>
</ParserResult>

HTML output (source)

<p>
<pre>
 +---------------Xp---------------+
 | +-------Os------+ |
 +---Wd--+-Ss-+ +IDDC+--Dmu-+ |
 | | | | | | |
LEFT-WALL Mary had.v a little lamb.n .
 LEFT-WALL Xp <---Xp----> Xp .
(m) LEFT-WALL Wd <---Wd----> Wd Mary
(m) Mary Ss <---Ss----> S had.v
(m) had.v O <---Os----> Os lamb.n
(m) little Dmu <---Dmu---> D*u lamb.n
(m) a IDDC <---IDDC--> IDDC little
 . RW <---RW----> RW RIGHT-WALL
</pre>
</p>

HTML output (display)

 +---------------Xp---------------+
 | +-------Os------+ |
 +---Wd--+-Ss-+ +IDDC+--Dmu-+ |
 | | | | | | |
LEFT-WALL Mary had.v a little lamb.n .
 LEFT-WALL Xp <---Xp----> Xp .
(m) LEFT-WALL Wd <---Wd----> Wd Mary
(m) Mary Ss <---Ss----> S had.v
(m) had.v O <---Os----> Os lamb.n
(m) little Dmu <---Dmu---> D*u lamb.n
(m) a IDDC <---IDDC--> IDDC little
 . RW <---RW----> RW RIGHT-WALL

Text output

 +---------------Xp---------------+
 | +-------Os------+ |
 +---Wd--+-Ss-+ +IDDC+--Dmu-+ |
 | | | | | | |
LEFT-WALL Mary had.v a little lamb.n .
 LEFT-WALL Xp <---Xp----> Xp .
(m) LEFT-WALL Wd <---Wd----> Wd Mary
(m) Mary Ss <---Ss----> S had.v
(m) had.v O <---Os----> Os lamb.n
(m) little Dmu <---Dmu---> D*u lamb.n
(m) a IDDC <---IDDC--> IDDC little
 . RW <---RW----> RW RIGHT-WALL

10/01/13 MorphAdorner Page 264

MorphAdorner Server Services: Sentence Splitter Service
Service name: sentencesplitter

Service description: Splits plain text into sentences.

HTTP methods allowed: GET, POST, OPTIONS

POST accepts as input: application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 corpusConfig
Corpus configuration name. In the standard distribution these are ece,
eme, and ncf.

 media Result format. One of json, xml, html, text .

 text Text to be processed.

 includeInputText
Allowed values are true to include the input text in the output and false
to not include the input text.

 langCode
ISO language code. These are two or three character codes. The default
is en, English. You may specify *** Detect *** to indicate that the
server should try to determine the language from the text provided.

Sample POST form
<form accept-charset="UTF-8" method="post" action="sentencesplitter"
 target="_blank"
 name="sentencesplitter">
<table cellpadding="0" cellspacing="5">
<tr>
<td>Text:</td>
<td colspan="2">
<textarea name="text" rows="15" cols="76"></textarea>
</td>
</tr>
<tr>
<td valign="top">

Lexicon:
</td>
<td>
<input type="radio" name="corpusConfig" value="eme">Early Modern English</input>

<input type="radio" name="corpusConfig" value="ece">Eighteen Century
English</input>

<input type="radio" name="corpusConfig" value="ncf" checked="checked">Nineteenth
Century Fiction</input>
</td>
</tr>
<tr>

10/01/13 MorphAdorner Page 265

<td>Language:</td>
<td>
<select name="langCode">
<option value="en" selected="selected">English</option>
<option value="">*** Detect ***</option>
<option value="af">Afrikaans</option>
<option value="ak">Akan</option>
<option value="sq">Albanian</option>
<option value="am">Amharic</option>
<option value="ar">Arabic</option>
<option value="hy">Armenian</option>
<option value="as">Assamese</option>
<option value="az">Azerbaijani</option>
<option value="bm">Bambara</option>
<option value="bas">Basa</option>
<option value="eu">Basque</option>
<option value="be">Belarusian</option>
<option value="bem">Bemba</option>
<option value="bn">Bengali</option>
<option value="bs">Bosnian</option>
<option value="br">Breton</option>
<option value="bg">Bulgarian</option>
<option value="my">Burmese</option>
<option value="ca">Catalan</option>
<option value="chr">Cherokee</option>
<option value="zh">Chinese</option>
<option value="kw">Cornish</option>
<option value="hr">Croatian</option>
<option value="cs">Czech</option>
<option value="da">Danish</option>
<option value="dua">Duala</option>
<option value="nl">Dutch</option>
<option value="eo">Esperanto</option>
<option value="et">Estonian</option>
<option value="ee">Ewe</option>
<option value="ewo">Ewondo</option>
<option value="fo">Faroese</option>
<option value="fil">Filipino</option>
<option value="fi">Finnish</option>
<option value="fr">French</option>
<option value="ff">Fulah</option>
<option value="gl">Gallegan</option>
<option value="lg">Ganda</option>
<option value="ka">Georgian</option>
<option value="de">German</option>
<option value="el">Greek</option>
<option value="kl">Greenlandic</option>
<option value="gu">Gujarati</option>
<option value="ha">Hausa</option>
<option value="haw">Hawaiian</option>
<option value="iw">Hebrew</option>
<option value="hi">Hindi</option>
<option value="hu">Hungarian</option>
<option value="is">Icelandic</option>
<option value="ig">Igbo</option>
<option value="in">Indonesian</option>
<option value="ga">Irish</option>

10/01/13 MorphAdorner Page 266

<option value="it">Italian</option>
<option value="ja">Japanese</option>
<option value="kab">Kabyle</option>
<option value="kam">Kamba</option>
<option value="kn">Kannada</option>
<option value="kk">Kazakh</option>
<option value="km">Khmer</option>
<option value="ki">Kikuyu</option>
<option value="rw">Kinyarwanda</option>
<option value="kok">Konkani</option>
<option value="ko">Korean</option>
<option value="lv">Latvian</option>
<option value="ln">Lingala</option>
<option value="lt">Lithuanian</option>
<option value="lu">Luba-Katanga</option>
<option value="mk">Macedonian</option>
<option value="mg">Malagasy</option>
<option value="ms">Malay</option>
<option value="ml">Malayalam</option>
<option value="mt">Maltese</option>
<option value="gv">Manx</option>
<option value="mr">Marathi</option>
<option value="mas">Masai</option>
<option value="ne">Nepali</option>
<option value="nd">North Ndebele</option>
<option value="nb">Norwegian Bokm?l</option>
<option value="nn">Norwegian Nynorsk</option>
<option value="nyn">Nyankole</option>
<option value="or">Oriya</option>
<option value="om">Oromo</option>
<option value="pa">Panjabi</option>
<option value="fa">Persian</option>
<option value="pl">Polish</option>
<option value="pt">Portuguese</option>
<option value="ps">Pushto</option>
<option value="rm">Raeto-Romance</option>
<option value="ro">Romanian</option>
<option value="rn">Rundi</option>
<option value="ru">Russian</option>
<option value="sg">Sango</option>
<option value="sr">Serbian</option>
<option value="sn">Shona</option>
<option value="ii">Sichuan Yi</option>
<option value="si">Sinhalese</option>
<option value="sk">Slovak</option>
<option value="sl">Slovenian</option>
<option value="so">Somali</option>
<option value="es">Spanish</option>
<option value="sw">Swahili</option>
<option value="sv">Swedish</option>
<option value="gsw">Swiss German</option>
<option value="ta">Tamil</option>
<option value="te">Telugu</option>
<option value="th">Thai</option>
<option value="bo">Tibetan</option>
<option value="ti">Tigrinya</option>
<option value="to">Tonga</option>

10/01/13 MorphAdorner Page 267

<option value="tr">Turkish</option>
<option value="uk">Ukrainian</option>
<option value="ur">Urdu</option>
<option value="uz">Uzbek</option>
<option value="vai">Vai</option>
<option value="vi">Vietnamese</option>
<option value="cy">Welsh</option>
<option value="yo">Yoruba</option>
<option value="zu">Zulu</option>
</select>
</td>
</tr>
<tr>
<td> </td>
<td>
<input type="checkbox" name="includeInputText" value="true"
 checked="checked"/>
Include input text in results
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td valign="top">
Results format:
</td>
<td>
<input type="radio" name="media" value="json">JSON format</input>

<input type="radio" name="media" value="xml" checked="checked">XML
format</input>

<input type="radio" name="media" value="html">HTML format</input>

<input type="radio" name="media" value="text">Text format</input>
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td colspan="2">
<input type="submit" name="split" value="Split" />
</td>
</tr>
</table>
</form>

10/01/13 MorphAdorner Page 268

Output

Here we split a paragraph from Lincolns "Gettysburg Address" into sentences.

Now we are engaged in a great civil war, testing whether that nation, or any nation, so
conceived and so dedicated, can long endure. We are met on a great battle-field of that war.
We have come to dedicate a portion of that field, as a final resting place for those who here
gave their lives that that nation might live. It is altogether fitting and proper that we should
do this.

The JSON and XML WordTokenizerResult echo the input text, the ISO language code langCode, and
the corpusConfig. The sentences container wraps a sequence of sentence entries each of which
represents a single parsed sentence from the input text. Each sentence contains a sequence of token
entries representing the words and punctuation in the sentence. The meldedSentences container wraps a
sequence of meldedSentence entries each of which contains a single untokenized sentence. The HTML
and text versions provide displayable versions of the extracted sentences.

JSON output

{
 "SentenceSplitterResult": {
 "text": "Now we are engaged in a great civil war, testing whether that nation,
or any nation, so conceived and so dedicated, can long endure. We are met on a
great battle-field of that war. We have come to dedicate a portion of that field,
as a final resting place for those who here gave their lives that that nation
might live. It is altogether fitting and proper that we should do this.",
 "langCode": "en",
 "corpusConfig": "ncf",
 "sentences": [
 {
 "sentence": [
 {
 "token": [
 "Now",
 "we",
 "are",
 "engaged",
 "in",
 "a",
 "great",
 "civil",
 "war",
 ",",
 "testing",
 "whether",
 "that",
 "nation",
 ",",
 "or",
 "any",
 "nation",
 ",",
 "so",
 "conceived",
 "and",

10/01/13 MorphAdorner Page 269

 "so",
 "dedicated",
 ",",
 "can",
 "long",
 "endure",
 "."
]
 },
 {
 "token": [
 "We",
 "are",
 "met",
 "on",
 "a",
 "great",
 "battle-field",
 "of",
 "that",
 "war",
 "."
]
 },
 {
 "token": [
 "We",
 "have",
 "come",
 "to",
 "dedicate",
 "a",
 "portion",
 "of",
 "that",
 "field",
 ",",
 "as",
 "a",
 "final",
 "resting",
 "place",
 "for",
 "those",
 "who",
 "here",
 "gave",
 "their",
 "lives",
 "that",
 "that",
 "nation",
 "might",
 "live",
 "."
]
 },

10/01/13 MorphAdorner Page 270

 {
 "token": [
 "It",
 "is",
 "altogether",
 "fitting",
 "and",
 "proper",
 "that",
 "we",
 "should",
 "do",
 "this",
 "."
]
 }
]
 }
],
 "meldedSentences": [
 {
 "meldedSentence": [
 "Now we are engaged in a great civil war, testing whether that nation, or
any nation, so conceived and so dedicated, can long endure.",
 "We are met on a great battle-field of that war.",
 "We have come to dedicate a portion of that field, as a final resting
place for those who here gave their lives that that nation might live.",
 "It is altogether fitting and proper that we should do this."
]
 }
]
 }
}

XML output

<?xml version="1.0"?>
<SentenceSplitterResult>
 <text>Now we are engaged in a great civil war, testing whether that nation, or
any nation, so conceived and so dedicated, can long endure. We are met on a great
battle-field of that war. We have come to dedicate a portion of that field, as a
final resting place for those who here gave their lives that that nation might
live. It is altogether fitting and proper that we should do this.</text>
 <langCode>en</langCode>
 <corpusConfig>ncf</corpusConfig>
 <sentences>
 <sentence>
 <token>Now</token>
 <token>we</token>
 <token>are</token>
 <token>engaged</token>
 <token>in</token>
 <token>a</token>
 <token>great</token>
 <token>civil</token>
 <token>war</token>

10/01/13 MorphAdorner Page 271

 <token>,</token>
 <token>testing</token>
 <token>whether</token>
 <token>that</token>
 <token>nation</token>
 <token>,</token>
 <token>or</token>
 <token>any</token>
 <token>nation</token>
 <token>,</token>
 <token>so</token>
 <token>conceived</token>
 <token>and</token>
 <token>so</token>
 <token>dedicated</token>
 <token>,</token>
 <token>can</token>
 <token>long</token>
 <token>endure</token>
 <token>.</token>
 </sentence>
 <sentence>
 <token>We</token>
 <token>are</token>
 <token>met</token>
 <token>on</token>
 <token>a</token>
 <token>great</token>
 <token>battle-field</token>
 <token>of</token>
 <token>that</token>
 <token>war</token>
 <token>.</token>
 </sentence>
 <sentence>
 <token>We</token>
 <token>have</token>
 <token>come</token>
 <token>to</token>
 <token>dedicate</token>
 <token>a</token>
 <token>portion</token>
 <token>of</token>
 <token>that</token>
 <token>field</token>
 <token>,</token>
 <token>as</token>
 <token>a</token>
 <token>final</token>
 <token>resting</token>
 <token>place</token>
 <token>for</token>
 <token>those</token>
 <token>who</token>
 <token>here</token>
 <token>gave</token>
 <token>their</token>

10/01/13 MorphAdorner Page 272

 <token>lives</token>
 <token>that</token>
 <token>that</token>
 <token>nation</token>
 <token>might</token>
 <token>live</token>
 <token>.</token>
 </sentence>
 <sentence>
 <token>It</token>
 <token>is</token>
 <token>altogether</token>
 <token>fitting</token>
 <token>and</token>
 <token>proper</token>
 <token>that</token>
 <token>we</token>
 <token>should</token>
 <token>do</token>
 <token>this</token>
 <token>.</token>
 </sentence>
 </sentences>
 <meldedSentences>
 <meldedSentence>Now we are engaged in a great civil war, testing whether
that nation, or any nation, so conceived and so dedicated, can long
endure.</meldedSentence>
 <meldedSentence>We are met on a great battle-field of that
war.</meldedSentence>
 <meldedSentence>We have come to dedicate a portion of that field, as a
final resting place for those who here gave their lives that that nation might
live.</meldedSentence>
 <meldedSentence>It is altogether fitting and proper that we should do
this.</meldedSentence>
 </meldedSentences>
</SentenceSplitterResult>

HTML output (source)

<h3>4 sentences found.</h3>
<table border="0">
<tr>
<th align="left">S#</th>
<th align="left">Sentence</th>
</tr>
<tr>
<td valign="top" align="left">1</td>
<td valign="top" align="left">Now we are engaged in a great civil war, testing
whether that nation, or any nation, so conceived and so dedicated, can long
endure.</td>
</tr>
<tr>
<td valign="top" align="left">2</td>
<td valign="top" align="left">We are met on a great battle-field of that war.</td>
</tr>
<tr>

10/01/13 MorphAdorner Page 273

<td valign="top" align="left">3</td>
<td valign="top" align="left">We have come to dedicate a portion of that field, as
a final resting place for those who here gave their lives that that nation might
live.</td>
</tr>
<tr>
<td valign="top" align="left">4</td>
<td valign="top" align="left">It is altogether fitting and proper that we should do
this.</td>
</tr>
</table>

HTML output (display)

4 sentences found.

S# Sentence
1 Now we are engaged in a great civil war, testing whether that nation, or any nation, so conceived

and so dedicated, can long endure.
2 We are met on a great battle-field of that war.
3 We have come to dedicate a portion of that field, as a final resting place for those who here gave

their lives that that nation might live.
4 It is altogether fitting and proper that we should do this.

Text output

4 sentences found.
S# Sentence
1 Now we are engaged in a great civil war, testing whether that nation, or
any nation, so conceived and so dedicated, can long endure.
2 We are met on a great battle-field of that war.
3 We have come to dedicate a portion of that field, as a final resting place
for those who here gave their lives that that nation might live.
4 It is altogether fitting and proper that we should do this.

10/01/13 MorphAdorner Page 274

MorphAdorner Server Services: Spelling Standardizer Service
Service name: spellingstandardizer

Service description: Find standard spelling for a word.

HTTP methods allowed: GET, POST, OPTIONS

POST accepts as input: application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 corpusConfig
Corpus configuration name. In the standard distribution these are ece,
eme, and ncf.

 media Result format. One of json, xml, html, text .

 spelling Spelling of a word.

 wordClass
Primary word class. One of adjective, adverb, compound, conjunction,
infinitive-to, noun, noun-possessive, preposition, pronoun, pronoun-
possessive, pronoun-possessive-determiner, verb .

 wordClass2
Secondary word class. One of adjective, adverb, compound, conjunction,
infinitive-to, noun, noun-possessive, preposition, pronoun, pronoun-
possessive, pronoun-possessive-determiner, verb .

 extendedSearch
Perform an extended search for standard spellings. Allowed values are
true to perform an extended search, false to not perform an extended
search.

Sample POST form
<form accept-charset="UTF-8" method="post" action="spellingstandardizer"
 target="_blank"
 name="standardizer">
<table cellpadding="0" cellspacing="5">
<tr>
<td>Spelling:</td>
<td><input type="text" name="spelling" size="20" value="" /></td>
</tr>
<tr>
<td>Primary word class:</td>
<td>
<select name="wordClass">
<option value="" selected="selected"></option>
<option value="adjective">adjective</option>
<option value="adverb">adverb</option>
<option value="compound">compound</option>
<option value="conjunction">conjunction</option>
<option value="infinitive-to">infinitive-to</option>
<option value="noun">noun</option>
<option value="noun-possessive">noun-possessive</option>

10/01/13 MorphAdorner Page 275

<option value="preposition">preposition</option>
<option value="pronoun">pronoun</option>
<option value="pronoun-possessive">pronoun-possessive</option>
<option value="pronoun-possessive-determiner">pronoun-possessive-
determiner</option>
<option value="verb">verb</option>
</select>
</td>
</tr>
<tr>
<td>Secondary word class:</td>
<td>
<select name="wordClass2">
<option value="" selected="selected"></option>
<option value="adjective">adjective</option>
<option value="adverb">adverb</option>
<option value="compound">compound</option>
<option value="conjunction">conjunction</option>
<option value="infinitive-to">infinitive-to</option>
<option value="noun">noun</option>
<option value="noun-possessive">noun-possessive</option>
<option value="preposition">preposition</option>
<option value="pronoun">pronoun</option>
<option value="pronoun-possessive">pronoun-possessive</option>
<option value="pronoun-possessive-determiner">pronoun-possessive-
determiner</option>
<option value="verb">verb</option>
</select>
</td>
</tr>
<tr>
<td valign="top">

Lexicon:
</td>
<td>
<input type="radio" name="corpusConfig" value="eme">Early Modern English</input>

<input type="radio" name="corpusConfig" value="ece">Eighteen Century
English</input>

<input type="radio" name="corpusConfig" value="ncf" checked="checked">Nineteenth
Century Fiction</input>
</td>
</tr>
<tr>
<td> </td>
<td><input type="checkbox" name="extendedSearch" value="true" />Perform extended
search for suggested spellings</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>

10/01/13 MorphAdorner Page 276

<tr>
<td valign="top">
Results format:
</td>
<td>
<input type="radio" name="media" value="json">JSON format</input>

<input type="radio" name="media" value="xml" checked="checked">XML
format</input>

<input type="radio" name="media" value="html">HTML format</input>

<input type="radio" name="media" value="text">Text format</input>
</td>
</tr>
<tr>
<td>
<input type="submit" name="standardize" value="Standardize" />
</td>
</tr>
</table>
</form>

Output

Here is sample output for spelling strykynge, using the eme (early modern English) corpus
configuration. We supply verb as the primary word class.

The JSON and XML formats echo the input spelling, the corpusConfig, and the primary and secondary
word classes wordClass and wordClass2 respectively. The resulting standard spelling striking is
emitted as standardSpelling. The input query parameter field values are not emitted for the HTML or
plain text output formats which are suitable for display.

JSON output

{
 "SpellingStandardizerResult": {
 "spelling": "strykynge",
 "standardSpelling": "striking",
 "corpusConfig": "eme",
 "wordClass": "verb",
 "wordClass2": ""
 }
}

XML output

<SpellingStandardizerResult>
 <spelling>strykynge</spelling>
 <standardSpelling>striking</standardSpelling>
 <corpusConfig>eme</corpusConfig>
 <wordClass>verb</wordClass>
 <wordClass2/>
</SpellingStandardizerResult><

10/01/13 MorphAdorner Page 277

HTML output (source)

<h3>Spelling Standardizer Results</h3>
<table border="0">
<tr>
<td valign="top" align="left">Standard spelling:</td>
<td valign="top" align="left">striking</td>
</tr>
</table>

HTML output (display)

Spelling Standardizer Results

Standard spelling: striking

Text output

Spelling Standardizer Results
Standard spelling: striking

10/01/13 MorphAdorner Page 278

MorphAdorner Server Services: Syllable Counter Service
Service name: syllablecounter

Service description: Count syllables in a word.

HTTP methods
allowed:

GET, POST, OPTIONS

POST accepts as
input:

application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 media Result format. One of json, xml, html, text .

 spelling Spelling of a word.

Sample POST form
<form accept-charset="UTF-8" method="post" action="syllablecounter"
 target="_blank"
 name="syllablecounter">
<table cellpadding="0" cellspacing="5">
<tr>
<td>Spelling:</td>
<td><input type="text" name="spelling" size="20" value="" /></td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td valign="top">
Results format:
</td>
<td>
<input type="radio" name="media" value="json">JSON format</input>

<input type="radio" name="media" value="xml" checked="checked">XML
format</input>

<input type="radio" name="media" value="html">HTML format</input>

<input type="radio" name="media" value="text">Text format</input>
</td>
</tr>
<tr>
<td>

</td>
<td>

10/01/13 MorphAdorner Page 279

</td>
</tr>
<tr>
<td>
<input type="submit" name="countsyllables" value="Count Syllables" />
</td>
</tr>
</table>
</form>

Output

We count the syllables in the word "antidisestablishmentarianism."

JSON output

{
 "SyllableCounterResult": {
 "spelling": "antidisestablishmentarianism",
 "syllableCount": 11
 }
}

XML output

<SyllableCounterResult>
 <spelling>antidisestablishmentarianism</spelling>
 <syllableCount>11</syllableCount>
</SyllableCounterResult>

HTML output (source)

<h3>Syllable count results</h3>
<table border="0">
<tr>
<td valign="top" align="left">Spelling:</td>
<td valign="top" align="left">antidisestablishmentarianism</td>
</tr>
<tr>
<td valign="top" align="left">Syllable count:</td>
<td valign="top" align="left">11</td>
</tr>
</table>

HTML output (display)

Syllable count results

Spelling: antidisestablishmentarianism
Syllable count: 11

10/01/13 MorphAdorner Page 280

Text output

Syllable count results
Spelling: antidisestablishmentarianism
Syllable count: 11

10/01/13 MorphAdorner Page 281

MorphAdorner Server Services: Text Segmenter Service
Service name: textsegmenter

Service description: Break up a text into thematically meaningful segments.

HTTP methods allowed: GET, POST, OPTIONS

POST accepts as input: application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 corpusConfig
Corpus configuration name. In the standard distribution these are ece,
eme, and ncf.

 c99MaskSize The C99 mask size. The default value is 11.

 c99SegmentsWanted
The C99 value for the number text segmented wanted. The default
value is -1, which lets the algorithm determine the number of
segments.

 includeInputText
Allowed values are true to include the input text in the output and
false to not include the input text.

 media Result format. One of json, xml, html, text .

 segmenterName
Text segmenter method name. The allowed values are C99 and Text
Tiling. Text tiling is the default.

 text Text to be processed.

 tilerSlidingWindowSize
The sliding window size for the Text Tiling algorithm. The default
value is 10.

 tilerStepSize The Text Tiling step size. The default value is 100.

Sample POST form
<form accept-charset="UTF-8" method="post" action="textsegmenter"
 target="_blank"
 name="segmenter">
<table cellpadding="0" cellspacing="5">
<tr>
<td>Text:</td>
<td colspan="2">
<textarea name="text" rows="15" cols="76"></textarea>
</td>
</tr>
<tr>
<td> </td>
<td>
<input type="checkbox" name="includeInputText" value="true"
 checked="checked"/>
Include input text in results

10/01/13 MorphAdorner Page 282

</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td valign="top">

Lexicon:
</td>
<td>
<input type="radio" name="corpusConfig" value="eme">Early Modern English</input>

<input type="radio" name="corpusConfig" value="ece">Eighteen Century
English</input>

<input type="radio" name="corpusConfig" value="ncf" checked="checked">Nineteenth
Century Fiction</input>
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td valign="top">

Segmenter:
</td>
<td>
<input type="radio" name="segmenterName" value="C99">C99</input>

<table border="0">
<tr>
<td>

</td>
<td>
Mask size:
</td>
<td>
<input type="text" name="c99MaskSize" size="5" value="11" /></input>
</td>
</tr>
<tr>
<td>

</td>
<td>
Segments desired:

10/01/13 MorphAdorner Page 283

</td>
<td>
<input type="text" name="c99SegmentsWanted" size="5" value="-1" /></input>
</td>
</tr>
</table>
<input type="radio" name="segmenterName" value="Text Tiling"
checked="checked">Text Tiling</input>

<table border="0">
<tr>
<td>

</td>
<td>
Sliding window size:
</td>
<td>
<input type="text" name="tilerSlidingWindowSize" size="5" value="10" /></input>
</td>
</tr>
<tr>
<td>

</td>
<td>
Segment size:
</td>
<td>
<input type="text" name="tilerStepSize" size="5" value="100" /></input>
</td>
</tr>
</table>
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td valign="top">
Results format:
</td>
<td>
<input type="radio" name="media" value="json">JSON format</input>

<input type="radio" name="media" value="xml" checked="checked">XML
format</input>

<input type="radio" name="media" value="html">HTML format</input>

<input type="radio" name="media" value="text">Text format</input>
</td>
</tr>
<tr>
<td>

10/01/13 MorphAdorner Page 284

</td>
<td>

</td>
</tr>
<tr>
<td colspan="2">
<input type="submit" name="segment" value="Segment" />
</td>
</tr>
</table>
</form>

Output

Here is sample output for the text segmenter service. We use Abraham Lincoln's "Gettysburg Address"
as the text. We select the default Text Tiling method.

The JSON and XML output echoes the input values. The sentences container wraps a sequence of
sentence entries each of which represents a single parsed sentence from the input text. Each sentence
contains a sequence of token entries representing the words and punctuation in the sentence. The
segments container wraps a list of integer values specifying the index of the first sentence (0-origin) of
each text segment. The segmentTexts wraps a series of segmentText entries each of which provides
melded versions of the sentences comprising each text segments, in order. The HTML and text versions
provide displayable versions of the text of the segments. The input values are not echoed.

JSON output

{
 "TextSegmenterResult": {
 "text": "Four score and seven years ago our fathers brought forth on
this\r\ncontinent a new nation, conceived in Liberty, and dedicated to\r\nthe
proposition that all men are created equal.\r\n\r\nNow we are engaged in a great
civil war, testing whether that\r\nnation, or any nation, so conceived and so
dedicated, can long\r\nendure. We are met on a great battle-field of that war. We
have\r\ncome to dedicate a portion of that field, as a final resting\r\nplace for
those who here gave their lives that that nation might\r\nlive. It is altogether
fitting and proper that we should do\r\nthis.\r\n\r\nBut, in a larger sense, we can
not dedicate -- we can not\r\nconsecrate -- we can not hallow -- this ground. The
brave men, living\r\nand dead, who struggled here, have consecrated it, far above
our\r\npoor power to add or detract. The world will little note, nor\r\nlong
remember what we say here, but it can never forget what\r\nthey did here. It is for
us the living, rather, to be dedicated\r\nhere to the unfinished work which they
who fought here have thus\r\nfar so nobly advanced. It is rather for us to be here
dedicated\r\nto the great task remaining before us -- that from these
honored\r\ndead we take increased devotion to that cause for which they\r\ngave the
last full measure of devotion -- that we here highly\r\nresolve that these dead
shall not have died in vain -- that this\r\nnation, under God, shall have a new
birth of freedom -- and that\r\ngovernment: of the people, by the people, for the
people, shall\r\nnot perish from the earth.",
 "corpusConfig": "ncf",
 "c99MaskSize": 11,
 "c99SegmentsWanted": -1,
 "tilerSlidingWindowSize": 10,
 "tilerStepSize": 100,

10/01/13 MorphAdorner Page 285

 "sentences": [
 {
 "sentence": [
 {
 "token": [
 "Four",
 "score",
 "and",
 "seven",
 "years",
 "ago",
 "our",
 "fathers",
 "brought",
 "forth",
 "on",
 "this",
 "continent",
 "a",
 "new",
 "nation",
 ",",
 "conceived",
 "in",
 "Liberty",
 ",",
 "and",
 "dedicated",
 "to",
 "the",
 "proposition",
 "that",
 "all",
 "men",
 "are",
 "created",
 "equal",
 "."
]
 },
 {
 "token": [
 "Now",
 "we",
 "are",
 "engaged",
 "in",
 "a",
 "great",
 "civil",
 "war",
 ",",
 "testing",
 "whether",
 "that",
 "nation",
 ",",

10/01/13 MorphAdorner Page 286

 "or",
 "any",
 "nation",
 ",",
 "so",
 "conceived",
 "and",
 "so",
 "dedicated",
 ",",
 "can",
 "long",
 "endure",
 "."
]
 },
 {
 "token": [
 "We",
 "are",
 "met",
 "on",
 "a",
 "great",
 "battle-field",
 "of",
 "that",
 "war",
 "."
]
 },
 {
 "token": [
 "We",
 "have",
 "come",
 "to",
 "dedicate",
 "a",
 "portion",
 "of",
 "that",
 "field",
 ",",
 "as",
 "a",
 "final",
 "resting",
 "place",
 "for",
 "those",
 "who",
 "here",
 "gave",
 "their",
 "lives",
 "that",

10/01/13 MorphAdorner Page 287

 "that",
 "nation",
 "might",
 "live",
 "."
]
 },
 {
 "token": [
 "It",
 "is",
 "altogether",
 "fitting",
 "and",
 "proper",
 "that",
 "we",
 "should",
 "do",
 "this",
 "."
]
 },
 {
 "token": [
 "But",
 ",",
 "in",
 "a",
 "larger",
 "sense",
 ",",
 "we",
 "can",
 "not",
 "dedicate",
 "--",
 "we",
 "can",
 "not",
 "consecrate",
 "--",
 "we",
 "can",
 "not",
 "hallow",
 "--",
 "this",
 "ground",
 "."
]
 },
 {
 "token": [
 "The",
 "brave",
 "men",

10/01/13 MorphAdorner Page 288

 ",",
 "living",
 "and",
 "dead",
 ",",
 "who",
 "struggled",
 "here",
 ",",
 "have",
 "consecrated",
 "it",
 ",",
 "far",
 "above",
 "our",
 "poor",
 "power",
 "to",
 "add",
 "or",
 "detract",
 "."
]
 },
 {
 "token": [
 "The",
 "world",
 "will",
 "little",
 "note",
 ",",
 "nor",
 "long",
 "remember",
 "what",
 "we",
 "say",
 "here",
 ",",
 "but",
 "it",
 "can",
 "never",
 "forget",
 "what",
 "they",
 "did",
 "here",
 "."
]
 },
 {
 "token": [
 "It",
 "is",

10/01/13 MorphAdorner Page 289

 "for",
 "us",
 "the",
 "living",
 ",",
 "rather",
 ",",
 "to",
 "be",
 "dedicated",
 "here",
 "to",
 "the",
 "unfinished",
 "work",
 "which",
 "they",
 "who",
 "fought",
 "here",
 "have",
 "thus",
 "far",
 "so",
 "nobly",
 "advanced",
 "."
]
 },
 {
 "token": [
 "It",
 "is",
 "rather",
 "for",
 "us",
 "to",
 "be",
 "here",
 "dedicated",
 "to",
 "the",
 "great",
 "task",
 "remaining",
 "before",
 "us",
 "--",
 "that",
 "from",
 "these",
 "honored",
 "dead",
 "we",
 "take",
 "increased",
 "devotion",

10/01/13 MorphAdorner Page 290

 "to",
 "that",
 "cause",
 "for",
 "which",
 "they",
 "gave",
 "the",
 "last",
 "full",
 "measure",
 "of",
 "devotion",
 "--",
 "that",
 "we",
 "here",
 "highly",
 "resolve",
 "that",
 "these",
 "dead",
 "shall",
 "not",
 "have",
 "died",
 "in",
 "vain",
 "--",
 "that",
 "this",
 "nation",
 ",",
 "under",
 "God",
 ",",
 "shall",
 "have",
 "a",
 "new",
 "birth",
 "of",
 "freedom",
 "--",
 "and",
 "that",
 "government",
 ":",
 "of",
 "the",
 "people",
 ",",
 "by",
 "the",
 "people",
 ",",
 "for",

10/01/13 MorphAdorner Page 291

 "the",
 "people",
 ",",
 "shall",
 "not",
 "perish",
 "from",
 "the",
 "earth",
 "."
]
 }
]
 }
],
 "segments": [
 {
 "int": [
 0,
 5
]
 }
],
 "segmenterName": "Text Tiling",
 "segmentTexts": [
 {
 "segmentText": [
 "Four score and seven years ago our fathers brought forth on this
continent a new nation, conceived in Liberty, and dedicated to the proposition that
all men are created equal. Now we are engaged in a great civil war, testing
whether that nation, or any nation, so conceived and so dedicated, can long endure.
We are met on a great battle-field of that war. We have come to dedicate a portion
of that field, as a final resting place for those who here gave their lives that
that nation might live. It is altogether fitting and proper that we should do
this. ",
 "But, in a larger sense, we can not dedicate -- we can not consecrate --
we can not hallow -- this ground. The brave men, living and dead, who struggled
here, have consecrated it, far above our poor power to add or detract. The world
will little note, nor long remember what we say here, but it can never forget what
they did here. It is for us the living, rather, to be dedicated here to the
unfinished work which they who fought here have thus far so nobly advanced. It is
rather for us to be here dedicated to the great task remaining before us -- that
from these honored dead we take increased devotion to that cause for which they
gave the last full measure of devotion -- that we here highly resolve that these
dead shall not have died in vain -- that this nation, under God, shall have a new
birth of freedom -- and that government: of the people, by the people, for the
people, shall not perish from the earth. "
]
 }
]
 }
}

10/01/13 MorphAdorner Page 292

XML output

<TextSegmenterResult>
 <text>Four score and seven years ago our fathers brought forth on this
 continent a new nation, conceived in Liberty, and dedicated to
 the proposition that all men are created equal.
 Now we are engaged in a great civil war, testing whether that
 nation, or any nation, so conceived and so dedicated, can long
 endure. We are met on a great battle-field of that war. We have
 come to dedicate a portion of that field, as a final resting
 place for those who here gave their lives that that nation might
 live. It is altogether fitting and proper that we should do
 this.
 But, in a larger sense, we can not dedicate -- we can not
 consecrate -- we can not hallow -- this ground. The brave men, living
 and dead, who struggled here, have consecrated it, far above our
 poor power to add or detract. The world will little note, nor
 long remember what we say here, but it can never forget what
 they did here. It is for us the living, rather, to be dedicated
 here to the unfinished work which they who fought here have thus
 far so nobly advanced. It is rather for us to be here dedicated
 to the great task remaining before us -- that from these honored
 dead we take increased devotion to that cause for which they
 gave the last full measure of devotion -- that we here highly
 resolve that these dead shall not have died in vain -- that this
 nation, under God, shall have a new birth of freedom -- and that
 government: of the people, by the people, for the people, shall
 not perish from the earth.</text>
 <corpusConfig>ncf</corpusConfig>
 <c99MaskSize>11</c99MaskSize>
 <c99SegmentsWanted>-1</c99SegmentsWanted>
 <tilerSlidingWindowSize>10</tilerSlidingWindowSize>
 <tilerStepSize>100</tilerStepSize>
 <sentences>
 <sentence>
 <token>Four</token>
 <token>score</token>
 <token>and</token>
 <token>seven</token>
 <token>years</token>
 <token>ago</token>
 <token>our</token>
 <token>fathers</token>
 <token>brought</token>
 <token>forth</token>
 <token>on</token>
 <token>this</token>
 <token>continent</token>
 <token>a</token>
 <token>new</token>
 <token>nation</token>
 <token>,</token>
 <token>conceived</token>
 <token>in</token>
 <token>Liberty</token>
 <token>,</token>
 <token>and</token>

10/01/13 MorphAdorner Page 293

 <token>dedicated</token>
 <token>to</token>
 <token>the</token>
 <token>proposition</token>
 <token>that</token>
 <token>all</token>
 <token>men</token>
 <token>are</token>
 <token>created</token>
 <token>equal</token>
 <token>.</token>
 </sentence>
 <sentence>
 <token>Now</token>
 <token>we</token>
 <token>are</token>
 <token>engaged</token>
 <token>in</token>
 <token>a</token>
 <token>great</token>
 <token>civil</token>
 <token>war</token>
 <token>,</token>
 <token>testing</token>
 <token>whether</token>
 <token>that</token>
 <token>nation</token>
 <token>,</token>
 <token>or</token>
 <token>any</token>
 <token>nation</token>
 <token>,</token>
 <token>so</token>
 <token>conceived</token>
 <token>and</token>
 <token>so</token>
 <token>dedicated</token>
 <token>,</token>
 <token>can</token>
 <token>long</token>
 <token>endure</token>
 <token>.</token>
 </sentence>
 <sentence>
 <token>We</token>
 <token>are</token>
 <token>met</token>
 <token>on</token>
 <token>a</token>
 <token>great</token>
 <token>battle-field</token>
 <token>of</token>
 <token>that</token>
 <token>war</token>
 <token>.</token>
 </sentence>
 <sentence>

10/01/13 MorphAdorner Page 294

 <token>We</token>
 <token>have</token>
 <token>come</token>
 <token>to</token>
 <token>dedicate</token>
 <token>a</token>
 <token>portion</token>
 <token>of</token>
 <token>that</token>
 <token>field</token>
 <token>,</token>
 <token>as</token>
 <token>a</token>
 <token>final</token>
 <token>resting</token>
 <token>place</token>
 <token>for</token>
 <token>those</token>
 <token>who</token>
 <token>here</token>
 <token>gave</token>
 <token>their</token>
 <token>lives</token>
 <token>that</token>
 <token>that</token>
 <token>nation</token>
 <token>might</token>
 <token>live</token>
 <token>.</token>
 </sentence>
 <sentence>
 <token>It</token>
 <token>is</token>
 <token>altogether</token>
 <token>fitting</token>
 <token>and</token>
 <token>proper</token>
 <token>that</token>
 <token>we</token>
 <token>should</token>
 <token>do</token>
 <token>this</token>
 <token>.</token>
 </sentence>
 <sentence>
 <token>But</token>
 <token>,</token>
 <token>in</token>
 <token>a</token>
 <token>larger</token>
 <token>sense</token>
 <token>,</token>
 <token>we</token>
 <token>can</token>
 <token>not</token>
 <token>dedicate</token>
 <token>--</token>

10/01/13 MorphAdorner Page 295

 <token>we</token>
 <token>can</token>
 <token>not</token>
 <token>consecrate</token>
 <token>--</token>
 <token>we</token>
 <token>can</token>
 <token>not</token>
 <token>hallow</token>
 <token>--</token>
 <token>this</token>
 <token>ground</token>
 <token>.</token>
 </sentence>
 <sentence>
 <token>The</token>
 <token>brave</token>
 <token>men</token>
 <token>,</token>
 <token>living</token>
 <token>and</token>
 <token>dead</token>
 <token>,</token>
 <token>who</token>
 <token>struggled</token>
 <token>here</token>
 <token>,</token>
 <token>have</token>
 <token>consecrated</token>
 <token>it</token>
 <token>,</token>
 <token>far</token>
 <token>above</token>
 <token>our</token>
 <token>poor</token>
 <token>power</token>
 <token>to</token>
 <token>add</token>
 <token>or</token>
 <token>detract</token>
 <token>.</token>
 </sentence>
 <sentence>
 <token>The</token>
 <token>world</token>
 <token>will</token>
 <token>little</token>
 <token>note</token>
 <token>,</token>
 <token>nor</token>
 <token>long</token>
 <token>remember</token>
 <token>what</token>
 <token>we</token>
 <token>say</token>
 <token>here</token>
 <token>,</token>

10/01/13 MorphAdorner Page 296

 <token>but</token>
 <token>it</token>
 <token>can</token>
 <token>never</token>
 <token>forget</token>
 <token>what</token>
 <token>they</token>
 <token>did</token>
 <token>here</token>
 <token>.</token>
 </sentence>
 <sentence>
 <token>It</token>
 <token>is</token>
 <token>for</token>
 <token>us</token>
 <token>the</token>
 <token>living</token>
 <token>,</token>
 <token>rather</token>
 <token>,</token>
 <token>to</token>
 <token>be</token>
 <token>dedicated</token>
 <token>here</token>
 <token>to</token>
 <token>the</token>
 <token>unfinished</token>
 <token>work</token>
 <token>which</token>
 <token>they</token>
 <token>who</token>
 <token>fought</token>
 <token>here</token>
 <token>have</token>
 <token>thus</token>
 <token>far</token>
 <token>so</token>
 <token>nobly</token>
 <token>advanced</token>
 <token>.</token>
 </sentence>
 <sentence>
 <token>It</token>
 <token>is</token>
 <token>rather</token>
 <token>for</token>
 <token>us</token>
 <token>to</token>
 <token>be</token>
 <token>here</token>
 <token>dedicated</token>
 <token>to</token>
 <token>the</token>
 <token>great</token>
 <token>task</token>
 <token>remaining</token>

10/01/13 MorphAdorner Page 297

 <token>before</token>
 <token>us</token>
 <token>--</token>
 <token>that</token>
 <token>from</token>
 <token>these</token>
 <token>honored</token>
 <token>dead</token>
 <token>we</token>
 <token>take</token>
 <token>increased</token>
 <token>devotion</token>
 <token>to</token>
 <token>that</token>
 <token>cause</token>
 <token>for</token>
 <token>which</token>
 <token>they</token>
 <token>gave</token>
 <token>the</token>
 <token>last</token>
 <token>full</token>
 <token>measure</token>
 <token>of</token>
 <token>devotion</token>
 <token>--</token>
 <token>that</token>
 <token>we</token>
 <token>here</token>
 <token>highly</token>
 <token>resolve</token>
 <token>that</token>
 <token>these</token>
 <token>dead</token>
 <token>shall</token>
 <token>not</token>
 <token>have</token>
 <token>died</token>
 <token>in</token>
 <token>vain</token>
 <token>--</token>
 <token>that</token>
 <token>this</token>
 <token>nation</token>
 <token>,</token>
 <token>under</token>
 <token>God</token>
 <token>,</token>
 <token>shall</token>
 <token>have</token>
 <token>a</token>
 <token>new</token>
 <token>birth</token>
 <token>of</token>
 <token>freedom</token>
 <token>--</token>
 <token>and</token>

10/01/13 MorphAdorner Page 298

 <token>that</token>
 <token>government</token>
 <token>:</token>
 <token>of</token>
 <token>the</token>
 <token>people</token>
 <token>,</token>
 <token>by</token>
 <token>the</token>
 <token>people</token>
 <token>,</token>
 <token>for</token>
 <token>the</token>
 <token>people</token>
 <token>,</token>
 <token>shall</token>
 <token>not</token>
 <token>perish</token>
 <token>from</token>
 <token>the</token>
 <token>earth</token>
 <token>.</token>
 </sentence>
 </sentences>
 <segments>
 <int>0</int>
 <int>5</int>
 </segments>
 <segmenterName>Text Tiling</segmenterName>
 <segmentTexts>
 <segmentText>Four score and seven years ago our fathers brought forth on
this continent a new nation, conceived in Liberty, and dedicated to the proposition
that all men are created equal. Now we are engaged in a great civil war, testing
whether that nation, or any nation, so conceived and so dedicated, can long endure.
We are met on a great battle-field of that war. We have come to dedicate a portion
of that field, as a final resting place for those who here gave their lives that
that nation might live. It is altogether fitting and proper that we should do
this. </segmentText>
 <segmentText>But, in a larger sense, we can not dedicate -- we can not
consecrate -- we can not hallow -- this ground. The brave men, living and dead,
who struggled here, have consecrated it, far above our poor power to add or
detract. The world will little note, nor long remember what we say here, but it
can never forget what they did here. It is for us the living, rather, to be
dedicated here to the unfinished work which they who fought here have thus far so
nobly advanced. It is rather for us to be here dedicated to the great task
remaining before us -- that from these honored dead we take increased devotion to
that cause for which they gave the last full measure of devotion -- that we here
highly resolve that these dead shall not have died in vain -- that this nation,
under God, shall have a new birth of freedom -- and that government: of the people,
by the people, for the people, shall not perish from the earth. </segmentText>
 </segmentTexts>
</TextSegmenterResult>

HTML output (source)

<h3>2 segments found using Text Tiling.</h3>

10/01/13 MorphAdorner Page 299

<table border="0">
<tr>
<th align="left">Segment</th>
<th align="left">Text</th>
</tr>
<tr>
<td valign="top" align="left">1</td>
<td valign="top" align="left">Four score and seven years ago our fathers brought
forth on this continent a new nation, conceived in Liberty, and dedicated to the
proposition that all men are created equal. Now we are engaged in a great civil
war, testing whether that nation, or any nation, so conceived and so dedicated, can
long endure. We are met on a great battle-field of that war. We have come to
dedicate a portion of that field, as a final resting place for those who here gave
their lives that that nation might live. It is altogether fitting and proper that
we should do this.</td>
</tr>
<tr>
<td valign="top" align="left">2</td>
<td valign="top" align="left">But, in a larger sense, we can not dedicate -- we can
not consecrate -- we can not hallow -- this ground. The brave men, living and
dead, who struggled here, have consecrated it, far above our poor power to add or
detract. The world will little note, nor long remember what we say here, but it
can never forget what they did here. It is for us the living, rather, to be
dedicated here to the unfinished work which they who fought here have thus far so
nobly advanced. It is rather for us to be here dedicated to the great task
remaining before us -- that from these honored dead we take increased devotion to
that cause for which they gave the last full measure of devotion -- that we here
highly resolve that these dead shall not have died in vain -- that this nation,
under God, shall have a new birth of freedom -- and that government: of the people,
by the people, for the people, shall not perish from the earth.</td>
</tr>
</table>

HTML output (display)

2 segments found using Text Tiling.

Segment Text
1 Four score and seven years ago our fathers brought forth on this continent a new nation,

conceived in Liberty, and dedicated to the proposition that all men are created equal. Now
we are engaged in a great civil war, testing whether that nation, or any nation, so conceived
and so dedicated, can long endure. We are met on a great battle-field of that war. We have
come to dedicate a portion of that field, as a final resting place for those who here gave their
lives that that nation might live. It is altogether fitting and proper that we should do this.

2 But, in a larger sense, we can not dedicate -- we can not consecrate -- we can not hallow --
this ground. The brave men, living and dead, who struggled here, have consecrated it, far
above our poor power to add or detract. The world will little note, nor long remember what
we say here, but it can never forget what they did here. It is for us the living, rather, to be
dedicated here to the unfinished work which they who fought here have thus far so nobly
advanced. It is rather for us to be here dedicated to the great task remaining before us -- that
from these honored dead we take increased devotion to that cause for which they gave the
last full measure of devotion -- that we here highly resolve that these dead shall not have

10/01/13 MorphAdorner Page 300

died in vain -- that this nation, under God, shall have a new birth of freedom -- and that
government: of the people, by the people, for the people, shall not perish from the earth.

Text output

2 segments found using Text Tiling.
Segment Text
1 Four score and seven years ago our fathers brought forth on this continent
a new nation, conceived in Liberty, and dedicated to the proposition that all men
are created equal. Now we are engaged in a great civil war, testing whether that
nation, or any nation, so conceived and so dedicated, can long endure. We are met
on a great battle-field of that war. We have come to dedicate a portion of that
field, as a final resting place for those who here gave their lives that that
nation might live. It is altogether fitting and proper that we should do this.
2 But, in a larger sense, we can not dedicate -- we can not consecrate -- we
can not hallow -

10/01/13 MorphAdorner Page 301

MorphAdorner Server Services: Text Summarizer Service
Service name: summarizer

Service description: Find summary sentences for a text.

HTTP methods
allowed:

GET, POST, OPTIONS

POST accepts as
input:

application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 corpusConfig
Corpus configuration name. In the standard distribution these are ece, eme,
and ncf.

 media Result format. One of json, xml, html, text .

 text Text to be processed.

 includeInputText
Allowed values are true to include the input text in the output and false to
not include the input text.

 maxSumSent Maximum number of summary sentences.

Sample POST form
<form accept-charset="UTF-8" method="post" action="summarizer"
 target="_blank"
 name="summarizer">
<table cellpadding="0" cellspacing="5">
<tr>
<td>Text:</td>
<td colspan="2">
<textarea name="text" rows="15" cols="76"></textarea>
</td>
</tr>
<tr>
<td> </td>
<td>
<input type="checkbox" name="includeInputText" value="true"
 checked="checked"/>
Include input text in results
</td>
</tr>
<tr>
<td valign="top">

Lexicon:
</td>
<td>
<input type="radio" name="corpusConfig" value="eme">Early Modern English</input><br

10/01/13 MorphAdorner Page 302

/>
<input type="radio" name="corpusConfig" value="ece">Eighteen Century
English</input>

<input type="radio" name="corpusConfig" value="ncf" checked="checked">Nineteenth
Century Fiction</input>
</td>
</tr>
<tr>
<td>Summary sentences:</td>
<td>
<input type="text" name="maxSumSent" size = "20" value="5" />
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td valign="top">
Results format:
</td>
<td>
<input type="radio" name="media" value="json">JSON format</input>

<input type="radio" name="media" value="xml" checked="checked">XML
format</input>

<input type="radio" name="media" value="html">HTML format</input>

<input type="radio" name="media" value="text">Text format</input>
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td colspan="2">
<input type="submit" name="summarizer" value="Summarizer" />
</td>
</tr>
</table>
</form>

Output

Here is sample output for the text summarizer service. We use Abraham Lincoln's "Gettysburg
Address" as the text, and request a two sentence summary. The JSON and XML output optionally
echoes back the input text.

10/01/13 MorphAdorner Page 303

JSON output

{
 "SummarizerResult": {
 "text": "Four score and seven years ago our fathers brought forth on
this continent a new nation, conceived in Liberty, and dedicated to
the proposition that all men are created equal. Now we are engaged
in a great civil war, testing whether that nation, or any nation, so
conceived and so dedicated, can long endure. We are met on a great
battle-field of that war. We have come to dedicate a portion of that
field, as a final resting place for those who here gave their lives
that that nation might live. It is altogether fitting and proper that
we should do this. But, in a larger sense, we can not dedicate --
we can not consecrate -- we can not hallow -- this ground. The brave
men, living and dead, who struggled here, have consecrated it, far
above our poor power to add or detract. The world will little note,
nor long remember what we say here, but it can never forget what they
did here. It is for us the living, rather, to be dedicated here to the
unfinished work which they who fought here have thus far so nobly
advanced. It is rather for us to be here dedicated to the great task
remaining before us -- that from these honored dead we take increased
devotion to that cause for which they gave the last full measure of
devotion -- that we here highly resolve that these dead shall not have
died in vain -- that this nation, under God, shall have a new birth of
freedom -- and that government: of the people, by the people, for the
people, shall not perish from the earth.",
 "corpusConfig": "ncf",
 "maxSumSent": 2,
 "summaryText": "Four score and seven years ago our fathers brought
forth on this continent a new nation, conceived in Liberty, and
dedicated to the proposition that all men are created equal. It is
rather for us to be here dedicated to the great task remaining before
us -- that from these honored dead we take increased devotion to that
cause for which they gave the last full measure of devotion -- that we
here highly resolve that these dead shall not have died in vain -- that
this nation, under God, shall have a new birth of freedom -- and that
government: of the people, by the people, for the people, shall not
perish from the earth. "
 }
}

XML output

<SummarizerResult>
 <text>Four score and seven years ago our fathers brought forth on this
 continent a new nation, conceived in Liberty, and dedicated to
 the proposition that all men are created equal.
 Now we are engaged in a great civil war, testing whether that
 nation, or any nation, so conceived and so dedicated, can long
 endure. We are met on a great battle-field of that war. We have
 come to dedicate a portion of that field, as a final resting
 place for those who here gave their lives that that nation might
 live. It is altogether fitting and proper that we should do this.
 But, in a larger sense, we can not dedicate -- we can not
 consecrate -- we can not hallow -- this ground. The brave men,
 living and dead, who struggled here, have consecrated it, far
 above our poor power to add or detract. The world will little

10/01/13 MorphAdorner Page 304

 note, nor long remember what we say here, but it can never forget
 what they did here. It is for us the living, rather, to be
 dedicated here to the unfinished work which they who fought here
 have thus far so nobly advanced. It is rather for us to be here
 dedicated to the great task remaining before us -- that from
 these honored dead we take increased devotion to that cause for
 which they gave the last full measure of devotion -- that we here
 highly resolve that these dead shall not have died in vain --
 that this nation, under God, shall have a new birth of freedom --
 and that government: of the people, by the people, for the people,
 shall not perish from the earth.</text>
 <corpusConfig>ncf</corpusConfig>
 <maxSumSent>2</maxSumSent>
 <summaryText>Four score and seven years ago our fathers brought
 forth on this continent a new nation, conceived in Liberty, and
 dedicated to the proposition that all men are created equal. It is
 rather for us to be here dedicated to the great task remaining before
 us -- that from these honored dead we take increased devotion to that
 cause for which they gave the last full measure of devotion -- that we
 here highly resolve that these dead shall not have died in vain -- that
 this nation, under God, shall have a new birth of freedom -- and that
 government: of the people, by the people, for the people, shall not
 perish from the earth.</summaryText>
</SummarizerResult>

HTML output (source)

<p>
Four score and seven years ago our fathers brought forth on this
continent a new nation, conceived in Liberty, and dedicated to the
proposition that all men are created equal. It is rather for us to be
here dedicated to the great task remaining before us -- that from these
honored dead we take increased devotion to that cause for which they
gave the last full measure of devotion -- that we here highly resolve
that these dead shall not have died in vain -- that this nation, under
God, shall have a new birth of freedom -- and that government: of the
people, by the people, for the people, shall not perish from the earth.
</p>

HTML output (display)

Four score and seven years ago our fathers brought forth on this continent a new
nation, conceived in Liberty, and dedicated to the proposition that all men are
created equal. It is rather for us to be here dedicated to the great task remaining
before us -- that from these honored dead we take increased devotion to that cause
for which they gave the last full measure of devotion -- that we here highly
resolve that these dead shall not have died in vain -- that this nation, under God,
shall have a new birth of freedom -- and that government: of the people, by the
people, for the people, shall not perish from the earth.

10/01/13 MorphAdorner Page 305

Text output

Four score and seven years ago our fathers brought forth on this
continent a new nation, conceived in Liberty, and dedicated to the
proposition that all men are created equal. It is rather for us to be
here dedicated to the great task remaining before us -- that from these
honored dead we take increased devotion to that cause for which they
gave the last full measure of devotion -- that we here highly resolve
that these dead shall not have died in vain -- that this nation, under
God, shall have a new birth of freedom -- and that government: of the
people, by the people, for the people, shall not perish from the earth.

10/01/13 MorphAdorner Page 306

MorphAdorner Server Services: Thesaurus Service
Service name: thesaurus

Service description: Find synonyms and antonyms for a spelling.

HTTP methods
allowed:

GET, POST, OPTIONS

POST accepts as
input:

application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 media Result format. One of json, xml, html, text .

 spelling Spelling of a word.

 addSynAnt
Allowed values are true to add the synonyms of the antonyms to antonym list
and false to not add the antonyms.

 wordClass
Word class. One of adjective, adverb, noun, verb, or no selection to search all
four word classes.

Sample POST form
<form accept-charset="UTF-8" method="post" action="thesaurus"
 target="_blank"
 name="thesaurus">
<table cellpadding="0" cellspacing="5">
<tr>
<td>Spelling:</td>
<td><input type="text" name="spelling" size="20" value="" /></td>
</tr>
<tr>
<td>Word class:</td>
<td>
<select name="wordClass">
<option value="" selected="selected"></option>
<option value="adjective">adjective</option>
<option value="adverb">adverb</option>
<option value="noun">noun</option>
<option value="verb">verb</option>
</select>
</td>
</tr>
<tr>
<td> </td>
<td><input type="checkbox" name="addSynAnt" value="true" />Add synonyms of
antonyms</td>
</tr>
<tr>
<td>

10/01/13 MorphAdorner Page 307

</td>
<td>

</td>
</tr>
<tr>
<td valign="top">
Results format:
</td>
<td>
<input type="radio" name="media" value="json">JSON format</input>

<input type="radio" name="media" value="xml" checked="checked">XML
format</input>

<input type="radio" name="media" value="html">HTML format</input>

<input type="radio" name="media" value="text">Text format</input>
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td>
<input type="submit" name="thesaurus" value="Thesaurus" />
</td>
</tr>
</table>
</form>

Output

Here is a list of synonyms and the principal antonym of "hot."

JSON output

{
 "ThesaurusResult": {
 "spelling": "hot",
 "wordClass": "",
 "addSynAnt": false,
 "synonyms": [
 {
 "synonym": [
 "blistering",
 "hot",
 "live",
 "raging",
 "red-hot",
 "spicy"
]
 }
],

10/01/13 MorphAdorner Page 308

 "antonyms": [
 {
 "antonym": "cold"
 }
]
 }
}

XML output

<ThesaurusResult>
 <spelling>hot</spelling>
 <wordClass/>
 <addSynAnt>false</addSynAnt>
 <synonyms>
 <synonym>blistering</synonym>
 <synonym>hot</synonym>
 <synonym>live</synonym>
 <synonym>raging</synonym>
 <synonym>red-hot</synonym>
 <synonym>spicy</synonym>
 </synonyms>
 <antonyms>
 <antonym>cold</antonym>
 </antonyms>
</ThesaurusResult>

HTML output (source)

<h3>
6 synonyms found for hot.
</h3>
<table border="0">
<tr><td>blistering</td></tr>
<tr><td>hot</td></tr>
<tr><td>live</td></tr>
<tr><td>raging</td></tr>
<tr><td>red-hot</td></tr>
<tr><td>spicy</td></tr>
</table>
<h3>
1 antonym found for hot.
</h3>
<table border="0">
<tr><td>cold</td></tr>
</table>

HTML output (display)

6 synonyms found for hot.

blistering
hot
live

10/01/13 MorphAdorner Page 309

raging
red-hot
spicy

1 antonym found for hot.

cold

Text output

6 synonyms found for hot.
blistering
hot
live
raging
red-hot
spicy
1 antonym found for hot.
cold

10/01/13 MorphAdorner Page 310

MorphAdorner Server Services: Word Tokenizer Service
Service name: wordtokenizer

Service description: Split text into words and punctuation.

HTTP methods allowed: GET, POST, OPTIONS

POST accepts as input: application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 corpusConfig
Corpus configuration name. In the standard distribution these are ece,
eme, and ncf.

 media Result format. One of json, xml, html, text .

 text Text to be processed.

 includeInputText
Allowed values are true to include the input text in the output and false
to not include the input text.

 langCode
ISO language code. These are two or three character codes. The default
is en, English. You may specify *** Detect *** to indicate that the
server should try to determine the language from the text provided.

Sample POST form
<form accept-charset="UTF-8" method="post" action="wordtokenizer"
 target="_blank"
 name="wordtokenizer">
<table cellpadding="0" cellspacing="5">
<tr>
<td>Text:</td>
<td colspan="2">
<textarea name="text" rows="15" cols="76"></textarea>
</td>
</tr>
<tr>
<td valign="top">

Lexicon:
</td>
<td>
<input type="radio" name="corpusConfig" value="eme">Early Modern English</input>

<input type="radio" name="corpusConfig" value="ece">Eighteen Century
English</input>

<input type="radio" name="corpusConfig" value="ncf" checked="checked">Nineteenth
Century Fiction</input>
</td>
</tr>
<tr>
<td>Language:</td>

10/01/13 MorphAdorner Page 311

<td>
<select name="langCode">
<option value="en" selected="selected">English</option>
<option value="">*** Detect ***</option>
<option value="af">Afrikaans</option>
<option value="ak">Akan</option>
<option value="sq">Albanian</option>
<option value="am">Amharic</option>
<option value="ar">Arabic</option>
<option value="hy">Armenian</option>
<option value="as">Assamese</option>
<option value="az">Azerbaijani</option>
<option value="bm">Bambara</option>
<option value="bas">Basa</option>
<option value="eu">Basque</option>
<option value="be">Belarusian</option>
<option value="bem">Bemba</option>
<option value="bn">Bengali</option>
<option value="bs">Bosnian</option>
<option value="br">Breton</option>
<option value="bg">Bulgarian</option>
<option value="my">Burmese</option>
<option value="ca">Catalan</option>
<option value="chr">Cherokee</option>
<option value="zh">Chinese</option>
<option value="kw">Cornish</option>
<option value="hr">Croatian</option>
<option value="cs">Czech</option>
<option value="da">Danish</option>
<option value="dua">Duala</option>
<option value="nl">Dutch</option>
<option value="eo">Esperanto</option>
<option value="et">Estonian</option>
<option value="ee">Ewe</option>
<option value="ewo">Ewondo</option>
<option value="fo">Faroese</option>
<option value="fil">Filipino</option>
<option value="fi">Finnish</option>
<option value="fr">French</option>
<option value="ff">Fulah</option>
<option value="gl">Gallegan</option>
<option value="lg">Ganda</option>
<option value="ka">Georgian</option>
<option value="de">German</option>
<option value="el">Greek</option>
<option value="kl">Greenlandic</option>
<option value="gu">Gujarati</option>
<option value="ha">Hausa</option>
<option value="haw">Hawaiian</option>
<option value="iw">Hebrew</option>
<option value="hi">Hindi</option>
<option value="hu">Hungarian</option>
<option value="is">Icelandic</option>
<option value="ig">Igbo</option>
<option value="in">Indonesian</option>
<option value="ga">Irish</option>
<option value="it">Italian</option>

10/01/13 MorphAdorner Page 312

<option value="ja">Japanese</option>
<option value="kab">Kabyle</option>
<option value="kam">Kamba</option>
<option value="kn">Kannada</option>
<option value="kk">Kazakh</option>
<option value="km">Khmer</option>
<option value="ki">Kikuyu</option>
<option value="rw">Kinyarwanda</option>
<option value="kok">Konkani</option>
<option value="ko">Korean</option>
<option value="lv">Latvian</option>
<option value="ln">Lingala</option>
<option value="lt">Lithuanian</option>
<option value="lu">Luba-Katanga</option>
<option value="mk">Macedonian</option>
<option value="mg">Malagasy</option>
<option value="ms">Malay</option>
<option value="ml">Malayalam</option>
<option value="mt">Maltese</option>
<option value="gv">Manx</option>
<option value="mr">Marathi</option>
<option value="mas">Masai</option>
<option value="ne">Nepali</option>
<option value="nd">North Ndebele</option>
<option value="nb">Norwegian Bokm?l</option>
<option value="nn">Norwegian Nynorsk</option>
<option value="nyn">Nyankole</option>
<option value="or">Oriya</option>
<option value="om">Oromo</option>
<option value="pa">Panjabi</option>
<option value="fa">Persian</option>
<option value="pl">Polish</option>
<option value="pt">Portuguese</option>
<option value="ps">Pushto</option>
<option value="rm">Raeto-Romance</option>
<option value="ro">Romanian</option>
<option value="rn">Rundi</option>
<option value="ru">Russian</option>
<option value="sg">Sango</option>
<option value="sr">Serbian</option>
<option value="sn">Shona</option>
<option value="ii">Sichuan Yi</option>
<option value="si">Sinhalese</option>
<option value="sk">Slovak</option>
<option value="sl">Slovenian</option>
<option value="so">Somali</option>
<option value="es">Spanish</option>
<option value="sw">Swahili</option>
<option value="sv">Swedish</option>
<option value="gsw">Swiss German</option>
<option value="ta">Tamil</option>
<option value="te">Telugu</option>
<option value="th">Thai</option>
<option value="bo">Tibetan</option>
<option value="ti">Tigrinya</option>
<option value="to">Tonga</option>
<option value="tr">Turkish</option>

10/01/13 MorphAdorner Page 313

<option value="uk">Ukrainian</option>
<option value="ur">Urdu</option>
<option value="uz">Uzbek</option>
<option value="vai">Vai</option>
<option value="vi">Vietnamese</option>
<option value="cy">Welsh</option>
<option value="yo">Yoruba</option>
<option value="zu">Zulu</option>
</select>
</td>
</tr>
<tr>
<td> </td>
<td>
<input type="checkbox" name="includeInputText" value="true"
 checked="checked"/>
Include input text in results
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td valign="top">
Results format:
</td>
<td>
<input type="radio" name="media" value="json">JSON format</input>

<input type="radio" name="media" value="xml" checked="checked">XML
format</input>

<input type="radio" name="media" value="html">HTML format</input>

<input type="radio" name="media" value="text">Text format</input>
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td colspan="2">
<input type="submit" name="tokenizer" value="Tokenize" />
</td>
</tr>
</table>
</form>

10/01/13 MorphAdorner Page 314

Output

Here we tokenize the first two sentences of Sarah Hale's poem "Mary had a little lamb."

Mary had a little lamb,
whose fleece was white as snow.
And everywhere that Mary went,
the lamb was sure to go.

The JSON and XML WordTokenizerResult echo the input text, the ISO language code langCode, and
the corpusConfig. The sentences container wraps a sequence of sentence entries each of which
represents a single parsed sentence from the input text. Each sentence contains a sequence of token
entries representing the words and punctuation in the sentence. The HTML and text versions provide
displayable versions of the tokenized sentences.

JSON output

{
 "WordTokenizerResult": {
 "text": "Mary had a little lamb, whose fleece was white as snow. And
everywhere that Mary went, the lamb was sure to go.",
 "langCode": "en",
 "corpusConfig": "ncf",
 "sentences": [
 {
 "sentence": [
 {
 "token": [
 "Mary",
 "had",
 "a",
 "little",
 "lamb",
 ",",
 "whose",
 "fleece",
 "was",
 "white",
 "as",
 "snow",
 "."
]
 },
 {
 "token": [
 "And",
 "everywhere",
 "that",
 "Mary",
 "went",
 ",",
 "the",
 "lamb",
 "was",
 "sure",

10/01/13 MorphAdorner Page 315

 "to",
 "go",
 "."
]
 }
]
 }
]
 }
}

XML output

<WordTokenizerResult>
 <text>Mary had a little lamb, whose fleece was white as snow. And everywhere
that Mary went, the lamb was sure to go.</text>
 <langCode>en</langCode>
 <corpusConfig>ncf</corpusConfig>
 <sentences>
 <sentence>
 <token>Mary</token>
 <token>had</token>
 <token>a</token>
 <token>little</token>
 <token>lamb</token>
 <token>,</token>
 <token>whose</token>
 <token>fleece</token>
 <token>was</token>
 <token>white</token>
 <token>as</token>
 <token>snow</token>
 <token>.</token>
 </sentence>
 <sentence>
 <token>And</token>
 <token>everywhere</token>
 <token>that</token>
 <token>Mary</token>
 <token>went</token>
 <token>,</token>
 <token>the</token>
 <token>lamb</token>
 <token>was</token>
 <token>sure</token>
 <token>to</token>
 <token>go</token>
 <token>.</token>
 </sentence>
 </sentences>
</WordTokenizerResult>

HTML output (source)

<h3>26 words in 2 sentences found.</h3>
<table border="0">

10/01/13 MorphAdorner Page 316

<tr>
<th align="left">S#</th>
<th align="left">W#</th>
<th align="left">Token</th>
<th align="left">Type</th>
</tr>
<tr>
<td valign="top" align="left">1</td>
<td valign="top" align="left">1</td>
<td valign="top" align="left">Mary</td>
<td valign="top" align="left">token</td>
</tr>
<tr>
<td valign="top" align="left">1</td>
<td valign="top" align="left">2</td>
<td valign="top" align="left">had</td>
<td valign="top" align="left">token</td>
</tr>
<tr>
<td valign="top" align="left">1</td>
<td valign="top" align="left">3</td>
<td valign="top" align="left">a</td>
<td valign="top" align="left">token</td>
</tr>
<tr>
<td valign="top" align="left">1</td>
<td valign="top" align="left">4</td>
<td valign="top" align="left">little</td>
<td valign="top" align="left">token</td>
</tr>
<tr>
<td valign="top" align="left">1</td>
<td valign="top" align="left">5</td>
<td valign="top" align="left">lamb</td>
<td valign="top" align="left">token</td>
</tr>
<tr>
<td valign="top" align="left">1</td>
<td valign="top" align="left">6</td>
<td valign="top" align="left">,</td>
<td valign="top" align="left">punctuation</td>
</tr>
<tr>
<td valign="top" align="left">1</td>
<td valign="top" align="left">7</td>
<td valign="top" align="left">whose</td>
<td valign="top" align="left">token</td>
</tr>
<tr>
<td valign="top" align="left">1</td>
<td valign="top" align="left">8</td>
<td valign="top" align="left">fleece</td>
<td valign="top" align="left">token</td>
</tr>
<tr>
<td valign="top" align="left">1</td>
<td valign="top" align="left">9</td>

10/01/13 MorphAdorner Page 317

<td valign="top" align="left">was</td>
<td valign="top" align="left">token</td>
</tr>
<tr>
<td valign="top" align="left">1</td>
<td valign="top" align="left">10</td>
<td valign="top" align="left">white</td>
<td valign="top" align="left">token</td>
</tr>
<tr>
<td valign="top" align="left">1</td>
<td valign="top" align="left">11</td>
<td valign="top" align="left">as</td>
<td valign="top" align="left">token</td>
</tr>
<tr>
<td valign="top" align="left">1</td>
<td valign="top" align="left">12</td>
<td valign="top" align="left">snow</td>
<td valign="top" align="left">token</td>
</tr>
<tr>
<td valign="top" align="left">1</td>
<td valign="top" align="left">13</td>
<td valign="top" align="left">.</td>
<td valign="top" align="left">punctuation</td>
</tr>
<tr>
<td valign="top" align="left">2</td>
<td valign="top" align="left">1</td>
<td valign="top" align="left">And</td>
<td valign="top" align="left">token</td>
</tr>
<tr>
<td valign="top" align="left">2</td>
<td valign="top" align="left">2</td>
<td valign="top" align="left">everywhere</td>
<td valign="top" align="left">token</td>
</tr>
<tr>
<td valign="top" align="left">2</td>
<td valign="top" align="left">3</td>
<td valign="top" align="left">that</td>
<td valign="top" align="left">token</td>
</tr>
<tr>
<td valign="top" align="left">2</td>
<td valign="top" align="left">4</td>
<td valign="top" align="left">Mary</td>
<td valign="top" align="left">token</td>
</tr>
<tr>
<td valign="top" align="left">2</td>
<td valign="top" align="left">5</td>
<td valign="top" align="left">went</td>
<td valign="top" align="left">token</td>
</tr>

10/01/13 MorphAdorner Page 318

<tr>
<td valign="top" align="left">2</td>
<td valign="top" align="left">6</td>
<td valign="top" align="left">,</td>
<td valign="top" align="left">punctuation</td>
</tr>
<tr>
<td valign="top" align="left">2</td>
<td valign="top" align="left">7</td>
<td valign="top" align="left">the</td>
<td valign="top" align="left">token</td>
</tr>
<tr>
<td valign="top" align="left">2</td>
<td valign="top" align="left">8</td>
<td valign="top" align="left">lamb</td>
<td valign="top" align="left">token</td>
</tr>
<tr>
<td valign="top" align="left">2</td>
<td valign="top" align="left">9</td>
<td valign="top" align="left">was</td>
<td valign="top" align="left">token</td>
</tr>
<tr>
<td valign="top" align="left">2</td>
<td valign="top" align="left">10</td>
<td valign="top" align="left">sure</td>
<td valign="top" align="left">token</td>
</tr>
<tr>
<td valign="top" align="left">2</td>
<td valign="top" align="left">11</td>
<td valign="top" align="left">to</td>
<td valign="top" align="left">token</td>
</tr>
<tr>
<td valign="top" align="left">2</td>
<td valign="top" align="left">12</td>
<td valign="top" align="left">go</td>
<td valign="top" align="left">token</td>
</tr>
<tr>
<td valign="top" align="left">2</td>
<td valign="top" align="left">13</td>
<td valign="top" align="left">.</td>
<td valign="top" align="left">punctuation</td>
</tr>
</table>

10/01/13 MorphAdorner Page 319

HTML output (display)

26 words in 2 sentences found.

S# W# Token Type
1 1 Mary token
1 2 had token
1 3 a token
1 4 little token
1 5 lamb token
1 6 , punctuation
1 7 whose token
1 8 fleece token
1 9 was token
1 10 white token
1 11 as token
1 12 snow token
1 13 . punctuation
2 1 And token
2 2 everywhere token
2 3 that token
2 4 Mary token
2 5 went token
2 6 , punctuation
2 7 the token
2 8 lamb token
2 9 was token
2 10 sure token
2 11 to token
2 12 go token
2 13 . punctuation

10/01/13 MorphAdorner Page 320

Text output

26 words in 2 sentences found.
S# W# Token Type
1 1 Mary token
1 2 had token
1 3 a token
1 4 little token
1 5 lamb token
1 6 , punctuation
1 7 whose token
1 8 fleece token
1 9 was token
1 10 white token
1 11 as token
1 12 snow token
1 13 . punctuation
2 1 And token
2 2 everywhere token
2 3 that token
2 4 Mary token
2 5 went token
2 6 , punctuation
2 7 the token
2 8 lamb token
2 9 was token
2 10 sure token
2 11 to token
2 12 go token
2 13 . punctuation

10/01/13 MorphAdorner Page 321

MorphAdorner Server Services: Verb Conjugator Service
Service name: verbconjugator

Service description: Conjugate an English verb.

HTTP methods
allowed:

GET, POST, OPTIONS

POST accepts as
input:

application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 american
Display American (U.S.) spellings of conjugated verbs. Allowed values are
true to display American spellings, false for British spellings.

 infinitive Infinitive of an English verb. The leading "to" is not specified.

 media Result format. One of json, xml, html, text .

 verbTense
English verb tense for which to provide conjugation. Available values are
present, presentParticiple, past, and pastParticiple.

Sample POST form
<form accept-charset="UTF-8" method="post" action="verbconjugator"
 name="conjugator">
<table cellpadding="0" cellspacing="5">
<tr>
<td>Infinitive:</td>
<td><input type="text" name="infinitive" size="20" value="" /></td>
</tr>
<tr>
<td>Verb tense:</td>
<td>
<select name="verbTense">
<option value="present" selected="selected">present</option>
<option value="presentParticiple">present participle</option>
<option value="past">past</option>
<option value="pastParticiple">past participle</option>
</select>
</td>
</tr>
<tr>
<td> </td>
<td>
<input type="checkbox" name="american" value="true" />
American spellings
</td>
</tr>
<tr>
<td>

10/01/13 MorphAdorner Page 322

</td>
<td>

</td>
</tr>
<tr>
<td valign="top">
Results format:
</td>
<td>
<input type="radio" name="media" value="json">JSON format</input>

<input type="radio" name="media" value="xml" checked="checked">XML
format</input>

<input type="radio" name="media" value="html">HTML format</input>

<input type="radio" name="media" value="text">Text format</input>
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td>
<input type="submit" name="conjugate" value="Conjugate" />
</td>
</tr>
</table>
</form>

Output

Here is sample verb conjugation output for the present tense of the verb "to be". Note that only "be" is
entered as the infinitive value; the "to" need not be specified.

JSON output

{
 "VerbConjugatorResult": {
 "infinitive": "be",
 "verbTense": "present",
 "american": false,
 "firstPersonSingular": "am",
 "secondPersonSingular": "are",
 "thirdPersonSingular": "is",
 "firstPersonPlural": "are",
 "secondPersonPlural": "are",
 "thirdPersonPlural": "are"
 }
}

10/01/13 MorphAdorner Page 323

XML output

<VerbConjugatorResult>
 <infinitive>be</infinitive>
 <verbTense>present</verbTense>
 <american>false</american>
 <firstPersonSingular>am</firstPersonSingular>
 <secondPersonSingular>are</secondPersonSingular>
 <thirdPersonSingular>is</thirdPersonSingular>
 <firstPersonPlural>are</firstPersonPlural>
 <secondPersonPlural>are</secondPersonPlural>
 <thirdPersonPlural>are</thirdPersonPlural>
</VerbConjugatorResult>

HTML output (source)

<h3>Conjugation of present tense for infinitive "to be"</h3>
<table border="0">
<tr>
<td valign="top" align="left">First person singular:</td>
<td valign="top" align="left">am</td>
</tr>
<tr>
<td valign="top" align="left">Second person singular:</td>
<td valign="top" align="left">are</td>
</tr>
<tr>
<td valign="top" align="left">Third person singular:</td>
<td valign="top" align="left">is</td>
</tr>
<tr>
<td valign="top" align="left">First person plural:</td>
<td valign="top" align="left">are</td>
</tr>
<tr>
<td valign="top" align="left">Second person plural:</td>
<td valign="top" align="left">are</td>
</tr>
<tr>
<td valign="top" align="left">Third person plural:</td>
<td valign="top" align="left">are</td>
</tr>
</table>

10/01/13 MorphAdorner Page 324

HTML output (display)

Conjugation of present tense for infinitive "to be"

First person singular: am
Second person singular: are
Third person singular: is
First person plural: are
Second person plural: are
Third person plural: are

Text output

Conjugation of present tense for infinitive "to be"
First person singular: am
Second person singular: are
Third person singular: is
First person plural: are
Second person plural: are
Third person plural: are

10/01/13 MorphAdorner Page 325

MorphAdorner Server Services: Version Service
Service name: version

Service description: MorphAdorner client and server versions.

HTTP methods
allowed:

GET, POST, OPTIONS

POST accepts as
input:

application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 media Result format. One of json, xml, html, text .

Sample POST form
<form accept-charset="UTF-8" method="post" action="version"
 target="_blank"
 name="version">
<table cellpadding="0" cellspacing="5">
<tr>
<td valign="top">
Results format:
</td>
<td>
<input type="radio" name="media" value="json">JSON format</input>

<input type="radio" name="media" value="xml" checked="checked">XML
format</input>

<input type="radio" name="media" value="html">HTML format</input>

<input type="radio" name="media" value="text">Text format</input>
</td>
</tr>
<tr>
<td>
<input type="submit" name="version" value="Get version" />
</td>
</tr>
<tr>
</table>
</form>

Output

Here is sample output for the version service. The MorphAdorner client library version is provided as
morphAdornerVersion, and the MorphAdorner server version is provided as
morphAdornerServerVersion.

10/01/13 MorphAdorner Page 326

JSON output

{
 "VersionResult": {
 "morphAdornerVersion": "2.0.1",
 "morphAdornerServerVersion": 1.0.0
 }
}

XML output

<VersionResult>
 <morphAdornerVersion>2.0.1</morphAdornerVersion>
 <morphAdornerServerVersion>1.0.0</morphAdornerServerVersion>
</VersionResult>

HTML output (source)

<h3>Program Versions</h3>
<table border="0">
<tr>
<td valign="top" align="left">MorphAdorner version:</td>
<td valign="top" align="left">2.0.1</td>
</tr>
<tr>
<td valign="top" align="left">MorphAdorner Server version:</td>
<td valign="top" align="left">1.0.0</td>
</tr>
</table>

HTML output (display)

Program Versions

MorphAdorner version: 2.0.1
MorphAdorner server version: 1.0.0

Text output

Program Versions
MorphAdorner version: 2.0.1
MorphAdorner Server version: 1.0.0

10/01/13 MorphAdorner Page 327

MorphAdorner Server Services: Adorned XML to Tabular File
Service name: teiadornedtotabularformat

Service description: Convert adorned XML to tabular file.

HTTP methods allowed: POST, OPTIONS

POST accepts as input: application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 media Result format. Only text allowed.

 teifile TEI input file.

 resultsAsAttachedFile
Allowed values are true to send the results as an attached file, and false to
send the results as a data stream.

Sample POST form
<form accept-charset="UTF-8" method="post"
 action="teiadornedtotabularformat"
 target="_blank"
 enctype="multipart/form-data" name="teiadornedtotabularformat">
<table cellpadding="0" cellspacing="5">
<tr>
<td>
Adorned TEI XML file:
</td>
<td>
<input type="file" name="teifile" size="50">
</td>
</tr>
<tr>
<td> </td>
<td>
<input type="checkbox" name="resultsAsAttachedFile" value="true"
 checked="checked"/>
Send results as attached file
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td colspan="2">
<input type="submit" name="convert" value="Convert" />
</td>

10/01/13 MorphAdorner Page 328

</tr>
</table>
</form>

Output

The output is a columnar tab-separated utf-8 encoded text file. The column order and contents are the
same as those generated by the XMLToTab utility (page 77).

10/01/13 MorphAdorner Page 329

MorphAdorner Server Services: Adorn a TEI XML file Service
Service name: teiadorner

Service description: Adorn a TEI XML file.

HTTP methods allowed: POST, OPTIONS

POST accepts as input: application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 corpusConfig
Corpus configuration name. In the standard distribution these are ece,
eme, and ncf.

 media Result format. Only xml allowed.

 teifile TEI input file.

 resultsAsAttachedFile
Allowed values are true to send the results as an attached file, and
false to send the results as a data stream.

 useChoice
Use TEI XML choice structure to hold standard spellings. Allowed
values are true to use the choice structure, false to emit the standard
spellings as reg= attributes.

Sample POST form
<form accept-charset="UTF-8" method="post" action="teiadorner"
 target="_blank"
 enctype="multipart/form-data" name="teiadorner">
<table cellpadding="0" cellspacing="5">
<tr>
<td>
TEI XML file:
</td>
<td>
<input type="file" name="teifile" size="50">
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td> </td>
<td>
<input type="checkbox" name="resultsAsAttachedFile" value="true"
 checked="checked"/>

10/01/13 MorphAdorner Page 330

Send results as attached file
</td>
</tr>
<tr>
<td valign="top">

Lexicon:
</td>
<td>
<input type="radio" name="corpusConfig" value="eme">Early Modern English</input>

<input type="radio" name="corpusConfig" value="ece">Eighteen Century
English</input>

<input type="radio" name="corpusConfig" value="ncf" checked="checked">Nineteenth
Century Fiction</input>
</td>
</tr>
<tr>
<td> </td>
<td>
<input type="checkbox" name="useChoice" value="true"/>
Use choice structure to emit standard spelling
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td colspan="2">
<input type="submit" name="adorn" value="Adorn" />
</td>
</tr>
</table>
</form>

Output

The input file is adorned. The output file is emitted in the same simple TEI P5 format the
AdornedToSimpleTEIP5 (page 45) utility produces. Setting the useChoice parameter to true is the same
as choosing the usechoice setting of AdornedToSimpleTEIP5. Setting the useChoice parameter to false
is the same as choosing the usereg setting of AdornedToSimpleTEIP5. The output TEI XML is returned
either as an attached file if resultsAsAttachedFile is true or as an XML stream if resultsAsAttachedFile
is false.

10/01/13 MorphAdorner Page 331

MorphAdorner Server Services: Apply changes to adorned file
service

Service name: teiapplychangestoadornedfile

Service description: Apply changes from change log to an adorned file.

HTTP methods
allowed:

POST, OPTIONS

POST accepts as input: application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 media Result format. Only xml allowed.

 origadornedfile Original adorned TEI XML file.

 changelogfile Change log file.

 revertChanges
Revert changes specified in a MorphAdorner change log file. Allowed
values are true to revert changes or false to apply the changes.

Sample POST form
<form accept-charset="UTF-8" method="post"
 action="teiapplychangestoadornedfile"
 target="_blank"
 enctype="multipart/form-data" name="teiapplychanges">
<table cellpadding="0" cellspacing="5">
<tr>
<td>
Original adorned TEI XML file:
</td>
<td>
<input type="file" name="origadornedfile" size="50">
</td>
</tr>
<tr>
<td>
XML change log file:
</td>
<td>
<input type="file" name="changelogfile" size="50">
</td>
</tr>
<tr>
<td> </td>
<td>
<input type="checkbox" name="revertChanges" value="true" />
Revert changes
</td>
</tr>

10/01/13 MorphAdorner Page 332

<tr>
<td> </td>
<td>
<input type="checkbox" name="resultsAsAttachedFile" value="true"
 checked="checked"/>
Send results as attached file
</td>
</tr>
<tr>
<td colspan="2">
<input type="submit" name="applychanges" value="Apply Changes" />
</td>
</tr>
</table>
</form>

Output

A source adorned or tokenized TEI XML file specified by origadornedfile is updated or downdated by
applying changes specified in a MorphAdorner change log file specified by changelogfile. If
revertChanges is false, the changes in the change log file are applied to update the source file. If
revertChanges is true, the changes are reverted to downdate the source file. The resultant modified file
is returned either as an attached file if resultsAsAttachedFile is true or as an XML stream if
resultsAsAttachedFile is false. This service produces the same output as the UpdateAdornedFile utility
(page 75). The change log format is provided in the description of the CompareAdornedFiles utility
(page 40).

10/01/13 MorphAdorner Page 333

MorphAdorner Server Services: Compare Adorned Files Service
Service name: teicompareadornedfiles

Service description: Compare two adorned files and generate change log.

HTTP methods allowed: POST, OPTIONS

POST accepts as input: application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 media Result format. Only xml allowed.

 origadornedfile Original adorned TEI XML file.

 updatedadornedfile Updated adorned TEI XML file.

 resultsAsAttachedFile
Allowed values are true to send the results as an attached file, and false to
send the results as a data stream.

Sample POST form
<form accept-charset="UTF-8" method="post" action="teicompareadornedfiles"
 target="_blank"
 enctype="multipart/form-data" name="teicompare">
<table cellpadding="0" cellspacing="5">
<tr>
<td>
Original adorned TEI XML file:
</td>
<td>
<input type="file" name="origadornedfile" size="50">
</td>
</tr>
<tr>
<td>
Updated adorned TEI XML file:
</td>
<td>
<input type="file" name="updatedadornedfile" size="50">
</td>
</tr>
<tr>
<td> </td>
<td>
<input type="checkbox" name="resultsAsAttachedFile" value="true"
 checked="checked"/>
Send results as attached file
</td>
</tr>
<tr>
<td colspan="2">
<input type="submit" name="compare" value="Compare" />

10/01/13 MorphAdorner Page 334

</td>
</tr>
</table>
</form>

Output

The original adorned or tokenized TEI XML file specified by origadornedfile is compared with the
updated adorned or tokenized TEI XML file specified by updatedadornedfile. The changes from the
original file to the updated file are written to a MorphAdorner change log file. The change log is
returned either as an attached file if resultsAsAttachedFile is true or as an XML stream if
resultsAsAttachedFile is false. This service produces the same output as the CompareAdornedFiles
utility. The change log format is provided in the description of the CompareAdornedFiles utility (page
40).

10/01/13 MorphAdorner Page 335

MorphAdorner Server Services: Extract text from TEI XML file
service

Service name: teitotext

Service description: Extract text from a TEI XML file.

HTTP methods allowed: POST, OPTIONS

POST accepts as input: application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 media Result format. Only text allowed.

 teifile TEI input file.

 resultsAsAttachedFile
Allowed values are true to send the results as an attached file, and false to
send the results as a data stream.

Sample POST form
<form accept-charset="UTF-8" method="post" action="teitotext"
 target="_blank"
 enctype="multipart/form-data" name="teitotext">
<table cellpadding="0" cellspacing="5">
<tr>
<td>
Adorned TEI XML file:
</td>
<td>
<input type="file" name="teifile" size="50">
</td>
</tr>
<tr>
<td>& </td>
<td>
<input type="checkbox" name="resultsAsAttachedFile" value="true"
 checked="checked"/>
Send results as attached file
</td>
</tr>
<tr>
<td>
&
</td>
<td>
&
</td>
</tr>
<tr>
<td colspan="2">
<input type="submit" name="extract" value="Extract Text" />

10/01/13 MorphAdorner Page 336

</td>
</tr>
</table>
</form>

Output

The text in the input TEI XML file is extracted and returned. This service works the same way as the
ExtractTEIText utility (page 53).

10/01/13 MorphAdorner Page 337

MorphAdorner Server Services: Extract Sentences Service
Service name: teiadornedtosentences

Service description: Extract sentences from an adorned TEI XML file.

HTTP methods allowed: POST, OPTIONS

POST accepts as input: application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 media Result format. Only text allowed.

 resultsAsAttachedFile
Allowed values are true to send the results as an attached file, and false to
send the results as a data stream.

 mainTextOnly
true to return sentences only from main text, false to return sentences from
all of the text.

 teifile TEI input file.

Sample POST form
<form accept-charset="UTF-8" method="post" action="teiadornedtosentences"
 target="_blank"
 enctype="multipart/form-data" name="teiadornedtosentences">
<table cellpadding="0" cellspacing="5">
<tr>
<td>
Adorned TEI XML file:
</td>
<td>
<input type="file" name="teifile" size="50">
</td>
</tr>
<tr>
<td> </td>
<td>
<input type="checkbox" name="mainTextOnly" value="true"
 checked="checked"/>
Only return sentences in main text
</td>
</tr>
<tr>
<td> </td>
<td>
<input type="checkbox" name="resultsAsAttachedFile" value="true"
 checked="checked"/>
Send results as attached file
</td>
</tr>
<tr>
<td>

10/01/13 MorphAdorner Page 338

</td>
<td>

</td>
</tr>
<tr>
<td colspan="2">
<input type="submit" name="extract" value="Extract Sentences" />
</td>
</tr>
</table>
</form>

Output

The output is return as a sequence of utf-8 encoded text lines, one sentence per line. When
mainTextOnly is true, at least the first word of a sentence must be present in the main part of the te

10/01/13 MorphAdorner Page 339

MorphAdorner Server Services: Move notes in TEI XML file
service

Service name: teinotesmover

Service description: Move notes in TEI XML file.

HTTP methods allowed: POST, OPTIONS

POST accepts as input: application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 media Result format. Only xml allowed.

 teifile TEI input file.

 resultsAsAttachedFile
Allowed values are true to send the results as an attached file, and false to
send the results as a data stream.

Sample POST form
<form accept-charset="UTF-8" method="post" action="teinotesmover"
 target="_blank"
 enctype="multipart/form-data" name="teinotesmover">
<table cellpadding="0" cellspacing="5">
<tr>
<td>
Adorned TEI XML file:
</td>
<td>
<input type="file" name="teifile" size="50">
</td>
</tr>
<tr>
<td> </td>
<td>
<input type="checkbox" name="resultsAsAttachedFile" value="true"
 checked="checked"/>
Send results as attached file
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td colspan="2">
<input type="submit" name="movenotes" value="Move Notes" />

10/01/13 MorphAdorner Page 340

</td>
</tr>
</table>
</form>

Output

The notes in the input TEI XML file are gathered and moved into a <div> at the end of the text. This
service works the same way as the MoveTEINotes utility (page 64).

10/01/13 MorphAdorner Page 341

MorphAdorner Server Services: TEI XML Tokenizer Service
Service name: teitokenizer

Service description: Tokenize a TEI XML file.

HTTP methods allowed: POST, OPTIONS

POST accepts as input: application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 corpusConfig
Corpus configuration name. In the standard distribution these are ece, eme,
and ncf.

 media Result format. Only xml allowed.

 teifile TEI input file.

 resultsAsAttachedFile
Allowed values are true to send the results as an attached file, and false to
send the results as a data stream.

Sample POST form
<form accept-charset="UTF-8" method="post" action="teitokenizer"
 target="_blank"
 enctype="multipart/form-data" name="teitokenizer">
<table cellpadding="0" cellspacing="5">
<tr>
<td>
TEI XML file:
</td>
<td>
<input type="file" name="teifile" size="50">
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td> </td>
<td>
<input type="checkbox" name="resultsAsAttachedFile" value="true"
 checked="checked"/>
Send results as attached file
</td>
</tr>
<tr>
<td valign="top">

10/01/13 MorphAdorner Page 342

Lexicon:
</td>
<td>
<input type="radio" name="corpusConfig" value="eme">Early Modern English</input>

<input type="radio" name="corpusConfig" value="ece">Eighteen Century
English</input>

<input type="radio" name="corpusConfig" value="ncf" checked="checked">Nineteenth
Century Fiction</input>
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td colspan="2">
<input type="submit" name="tokenize" value="Tokenize" />
</td>
</tr>
</table>
</form>

Output

The input TEI XML file is tokenized and xml:id elements are added to each token. Each token is
contained in either a word <w> or a punctuation <pc> element. The output TEI XML is returned either
as an attached file if resultsAsAttachedFile is true or as an XML stream if resultsAsAttachedFile is
false.

10/01/13 MorphAdorner Page 343

MorphAdorner Server Services: Unadorn an adorned TEI XML
file service

Service name: teiunadorner

Service description: Unadorn an adorned TEI XML file.

HTTP methods allowed: POST, OPTIONS

POST accepts as input: application/x-www-form-urlencoded

HTTP return codes:
200: service succeeded
400: service failed with an error

Query parameters

 media Result format. Only xml allowed.

 teifile TEI input file.

 resultsAsAttachedFile
Allowed values are true to send the results as an attached file, and false to
send the results as a data stream.

Sample POST form
<form accept-charset="UTF-8" method="post" action="teiunadorner"
 target="_blank"
 enctype="multipart/form-data" name="teiunadorner">
<table cellpadding="0" cellspacing="5">
<tr>
<td>
Adorned TEI XML file:
</td>
<td>
<input type="file" name="teifile" size="50">
</td>
</tr>
<tr>
<td> </td>
<td>
<input type="checkbox" name="resultsAsAttachedFile" value="true"
 checked="checked"/>
Send results as attached file
</td>
</tr>
<tr>
<td>

</td>
<td>

</td>
</tr>
<tr>
<td colspan="2">
<input type="submit" name="unadorn" value="Unadorn" />

10/01/13 MorphAdorner Page 344

</td>
</tr>
</table>
</form>

Output

The output is a TEI XML file with the word-level adornments in the input TEI XML file removed. This
service produces the same output as the Unadorn utility (page 74).

10/01/13 MorphAdorner Page 345

Appendices

Appendix One: References And Links

References

The following books provide excellent introductions to natural language processing and the technical
basis of the methods implemented in MorphAdorner.

• [Ananiadou and McNaught 2005] Sophia Ananiadou and John McNaught, eds. Text Mining for
Biology and Medicine. Boston and London: Artech House, 2005.

• [Jurafsky and Martin 2000] Daniel Jurafsky and James H. Martin. SPEECH and LANGUAGE
PROCESSING: An Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition. Upper Saddle River, New Jersey: Prentice-Hall, 2000.

• [Manning and Schütze 2000] Christopher D. Manning and Hinrich Schütze. Foundations of
Statistical Natural Language Processing. Cambridge, Massachusetts: MIT Press, 2000. Also
see the companion web site with errata and links to related sites.

• [Weiss et al. 2004] Shalom Weiss, Nitin Indurkhya, Tony Zhang, and Fred Damerau. Text
Mining: Predictive Methods for Analyzing Unstructured Information. Springer Verlag,
2004.

Links

• Christopher Manning's list offers an annotated list of resources to statistical natural language
processing and corpus-based computational linguistics.

• David W. Aha's machine learning page offers links to bibliographies, books, software, group,
tutorials, and much more related to machine learning.

10/01/13 MorphAdorner Page 346

http://home.earthlink.net/~dwaha/research/machine-learning.html
http://nlp.stanford.edu/links/statnlp.html
http://nlp.stanford.edu/fsnlp/

Appendix Two: Glossary of Natural Language Processing Terms

Abbott

Abbott is a framework for converting texts encoded in disparate versions of TEI into a common format
called TEI Analytics. Abbott was developed by Brian Pytlik Zillig and Steve Ramsey at the University
of Nebraska.

Adorned Corpus

An adorned corpus is a corpus in which the words in each work in the corpus have been adorned with
morphological information such as lemma and part of speech.

Adornment

Adornment is the process of adding information such as morphological information to texts. We use the
term "adornment" in preference to terms such as "annotation" or "tagging" which carry too many
alternative and confusing meanings. Adornment harkens back to the medieval sense of manuscript
adornment or illumination performed by monks - attaching pictures and marginal comments to texts.

Affix

An affix is a prefix or suffix which can be added to a morpheme or word to modify its meaning.

Attribute

An attribute in machine learning terms is a property of an object which may be used to determine its
classification. For example, one attribute of a literary work is its genre: play, novel, short story, etc.

Bayes's Rule

Bayes's rule defines the conditional probability for two events A and B as follows:

Pr(A | B) = Pr(B | A) * Pr(A) / Pr(B)

Bigram

A bigram is an ordered sequence of two adjacent words, characters, or morphological adornments.

Bound Morpheme

A bound morpheme is a prefix or suffix which is not a word but which can be attached to a free
morpheme to modify its meaning. For example, the bound morpheme "un" may be attached to the free
morpheme "known" to form the new morpheme/word "unknown."

Chunk

A chunk or work part is a part of a work residing in a corpus. A chunk consists of an ordered series of
words and associated morphological information with a label. A chunk may be treated as a bag of
words or ngrams for data analysis and navigation.

10/01/13 MorphAdorner Page 347

Collocate

Words which appear near each other in a text more frequently than we would expect by chance are
called collocates. Collocates may be ngrams, but may also consist of multiple words with gaps between
one or more of the words.

Corpus

A corpus is a collection of natural language texts. The plural is corpora. Each individual text in a
corpus is called a work.

Data Herding

Data herding is the process of acquiring, combining, editing, normalizing, and warehousing texts so
they can be used for further analysis.

Document Coordinate System

A document coordinate system assign a numeric vector of coordinate values to the position of each
token in a document. A typical coordinate value might consist of a pair of line and column values based
upon the printed form of the text, or a character offset and length pair based upon the digitized text.

Feature

See attribute.

Free Morpheme

A free morpheme is the basic or root form of a word. Bound morphemes can be attached to modify the
meaning.

Hard tag

A hard tag is an SGML, HTML, or XML tag which starts a new text segment but does not interrupt the
reading sequence of a text. Examples of hard tags include <div> and <p>.

Hidden Markov Model

A hidden Markov model (HMM) is a statistical model in which the system being modeled is assumed to
be a Markov Process with unknown parameters. The problem is to find the unknown parameters using
values of the observable model parameters.

HMM

Abbreviation for hidden Markov model.

Jump tag

A jump tag is an SGML, HTML, or XML tag which interrupts the reading sequence of a text and starts
a new text segment. Examples of jump tags include <note> and <speaker>.

10/01/13 MorphAdorner Page 348

Keyword Extraction

Keyword extraction extracts "interesting" phrases which characterize a text.

Language Recognition

Language recognition attempts to determine the language(s) in which a text is written. Literary texts
are generally composed in one principal language with possible inclusions of short passages (letters,
quotations) from other languages. It is helpful to categorize texts by principal language and most
prominent secondary language, if any. We can use statistical methods based upon character ngrams and
rank order statistics to determine the principal language of a text and list possible secondary languages.

Lemma

The lemma form or lexical root of an inflected spelling is the base form or head word form you would
find in a dictionary. A lemma can also refer to the set of lexemes with the same lexical root, the same
major word class, and the same word-sense.

Lemmatization

Lemmatization is the process of reducing an inflected spelling to its lexical root or lemma form. The
lemma form is the base form or head word form you would find in a dictionary.

Lexeme

A lexeme is the combination of the lemma form of a spelling along with its word class (noun, verb.
etc.).

Lexicon

A lexicon is a collection of words and their associated morphological information as used in a corpus.

Machine Learning

Machine learning occurs when a computer program modifies itself or "learns" so that subsequent
executions with the same input result in a different and hopefully more accurate output. Machine
learning methods may be supervised, i.e., using training data, or unsupervised, without using training
data.

Markov Process

A Markov process is a discrete state random process in which the conditional probability distribution of
the future states of the process depends only upon the present state and not on any past states.

MorphAdorner

MorphAdorner is a suite of Java programs which performs morphological adornment of words in a
text. A high-level description of MorphAdorner's capabilities appears on the MorphAdorner home
page.

10/01/13 MorphAdorner Page 349

http://morphadorner.northwestern.edu/
http://morphadorner.northwestern.edu/

Morpheme

A morpheme is a minimal grammatical unit of a language. A morpheme consists of a word or
meaningful part of a word that cannot be divided into smaller independent grammatical units.

Multiword Unit

A multiword unit is a special type of collocate in which the component words comprise a meaningful
phrase.

Named Entity

A named entity is a multiword unit consisting of a type of name such as a personal name, corporate
name, place name, or date.

Ngram

An ngram is an ordered sequence of n adjacent words, characters, or morphological adornments.

NUPOS

NUPOS is a part of speech tag set devised by Martin Mueller to allow part of speech tagging of English
texts from all periods as well as texts in classical languages. Further information about NUPOS appears
in NUPOS and Morphology (page 94).

Part of Speech

The part of speech is the role a word performs in a sentence. A simple list of the parts of speech for
English includes adjective, adverb, conjunction, noun, preposition, pronoun, and verb. For
computational purposes, however, each of these major word classes is usually subdivided to reflect
more granular syntactic and morphological structure.

Part of Speech Tagging

Part of speech tagging adorns or "tags" words in a text with each word's corresponding part of speech.
Part of speech tagging relies both on the meaning of the word and its positional relationship with
adjacent words.

Phone

A phone is an acoustic pattern which speakers of a particular natural language consider distinguishable
and linguistically important. Distinct phones in one language may be grouped together and treated as
the same sound in another language.

Phoneme

A phoneme is a group of phones considered to be the same sound by speakers of a specific natural
language. One or more phonemes combine to form a morpheme.

10/01/13 MorphAdorner Page 350

Prefix

A prefix consists of characters comprising one or more bound morphemes which can be added to the
front of a word to modify its meaning.

Pronoun Coreference Resolution

Pronoun coreference resolution matches pronouns with the nouns to which they refer. Some pronouns
may not actually refer to a specific noun. For example, in the sentence "It is not clear how to proceed"
the initial pronoun "It" does not refer to any specific noun.

Pseudo-bigram

A pseudo-bigram generalizes the computation of bigram statistical measures to ngrams longer than two
words by splitting the original multiword units into two groups of words, each treated as a single
"word".

Sentence Splitting

Sentence splitting assembles a tokenized text into sentences. Recognizing sentence boundaries is a
difficult task for a computer and generally requires a combination of rules and statistical methods.

Soft tag

A soft tag is an SGML, HTML, or XML tag which does not interrupt the reading sequence of a text and
does not start a new text segment. Examples of soft tags include <hi> and .

Spelling

The spelling is the orthographic representation of a spoken word. Words may have more than one
spelling, particularly in texts dating from earlier periods when spelling was not standardized.

Spelling Standardization

Spelling standardization is the mapping of variant, often archaic, spellings to standard modern forms.

Stemming

Stemming removes affixes from a spelling. The resulting stem is not necessarily a proper lexeme.
Stemming offers a simpler alternative to lemmatization. Stemming can be useful in information
retrieval applications, but is much less useful in literary applications. Popular stemmers include the
Martin Porter's stemmer and the Lancaster (Paice-Husk) stemmer.

Suffix

A suffix consists of characters comprising one or more bound morphemes which can be added to the
end of a word to modify its meaning.

Supervised Learning

Supervised learning is a machine learning technique which predicts the value of a given function for

10/01/13 MorphAdorner Page 351

any valid input after having been presented with training examples (i.e. pairs of input and correct
output).

Tagged Corpus

See adorned corpus.

TEI

Abbreviation for Text Encoding Initiative.

TEI Analytics

TEI Analytics is a literary DTD jointly developed by Martin Mueller at Northwestern University and
Brian Pytlik Zillig and Steve Ramsey at the University of Nebraska. TEI Analytics is the default XML
input format assumed by MorphAdorner. TEI Analytics is a minor modification of the P5 TEI-Lite
schema, with additional elements from the Linguistic Segment Categories to support morphosyntactic
annotation and lemmatization.

Text Encoding Initiative

The Text Encoding Initiative (TEI) Guidelines "are an international and interdisciplinary standard that
enables libraries, museums, publishers, and individual scholars to represent a variety of literary and
linguistic texts for online research, teaching, and preservation." More information may be found at the
official Text Encoding Initiative site.

Trigram

A trigram is an ordered sequence of three adjacent words, characters, or morphological adornments.

Unsupervised Learning

Unsupervised learning is a machine learning method which fits a model to observed data without
benefit of training data.

Viterbi Algorithm

The Viterbi algorithm allows searching a space containing an apparently exponential number of points
to be searched in polynomial time. The Viterbi algorithm is frequently used in hidden Markov model
statistical part of speech tagging applications to reduce the time complexity of seaches for the best tags
for a sequence of spellings in a sentence.

Word

A word is the basic unit of a language. Words are composed of morphemes.

Word Sense Disambiguation

Word sense disambiguation is the process of distinguishing different meanings of the same word in
different textual contexts. For example, a "bank" can be both a financial institution or a geographic

10/01/13 MorphAdorner Page 352

http://www.tei-c.org/

location next to a river.

Word Tokenization

Word tokenization splits a text into words, whitespace, and punctuation.

Work

A work is a single text which is a member of a corpus. Each work consist of one or more text segments
called work parts or chunks.

Work Part

See chunk.

10/01/13 MorphAdorner Page 353

	Part One: Introduction
	Introduction to MorphAdorner
	How MorphAdorner Works
	How Do I ...
	MorphAdorner Client Installation
	Quick Setup
	File Layout of Morphadorner Client Release
	Installing and Building MorphAdorner Client
	Documentation
	Running MorphAdorner

	Modification History
	MorphAdorner License
	Third-party Licenses

	MorphAdorner Support
	Credits
	Citing MorphAdorner

	Part Two: Adorning A Text
	Java OutOfMemory Errors
	Tokenizing an XML Text

	Part Three: Configuring MorphAdorner
	MorphAdorner Command Line
	MorphAdorner Configuration Settings

	Part Four: Utilities
	Adding Character Offsets
	Adding Pseudopages
	Adding unclear attributes to words with gaps
	Adorning Named Entities
	Applying an XSLT transformation to XML files
	Comparing String Counts
	Statistical Background
	Log-likelihood for comparing texts
	References

	Comparing Adorned Files
	Change Log Format

	Comparing Tabular Files
	Converting an adorned file to Sketch engine format
	Converting an adorned file to TCF format
	Converting a base adorned file to a simple TEI P5-like format
	Defining the parts of speech using an interGrp element

	Correcting Quote Marks
	Counting Affixes in an Adorned Text
	Counting Words In An Adorned Text
	Creating A Lexicon
	Creating a Suffix Lexicon
	Extracting Abbreviation Using PUNKT
	Extracting text from a TEI XML file
	Finding Languages in which a TEI Encoded Text is Written
	Fixing Superscripts
	Generating Tag Transition Probabilities
	Merging a Brill Lexicon
	Merging an Enhanced Brill Format Lexicon
	Merging Annolex corrections with adorned TEI XML files
	Merging Spelling Data
	Merging Text Files
	Merging Word Lists
	Moving notes in TEI XML files
	Processing Soft Hyphens
	Relemmatizing an Adorned File
	Removing cruft from TEI XML file
	Running The Link Grammar Parser
	Sampling Text Files
	Stripping Word Attributes
	Training A Part Of Speech Tagger
	Creating training data
	Updating the lemmatizer
	Creating the lexicons
	Generating probability transition matrices
	Spelling maps

	Unadorning adorned TEI files
	Updating an Adorned File
	Validating XML Files
	Verticalizing an Adorned Text

	Part Five: Background Information
	Gap Filler
	Hyphenator
	Language Recognizer
	English Lemmatizer
	Stemming
	English Lemmatization Process
	Using a lemma from the word lexicon
	Word classes for lemmatization
	Irregular forms
	Rules of detachment
	Ambiguous endings
	Words containing multiple parts of speech
	Punctuation and Symbols
	Ambiguous lemmata

	Lexicon Lookup
	Lexicon File Format

	MorphAdorner XML Output
	TEI-Analytics
	XML Tag types: Hard, Soft, and Jump Tags
	The <w>, <pc> and <c> tags
	<w> tag attributes
	Word IDs
	Location IDs
	Marking the end of a sentence
	Abbreviated attribute output
	Split tokens
	Simplified TEI P5-like output
	Named Entities

	Name Recognition
	NUPOS and Morphology
	Spellings
	Word Parts
	Word Classes
	Parts of Speech
	Lemmata
	MorphAdorner
	Summary
	NUPOS for English

	Parser
	Part of Speech Tagging
	Guessing Parts of Speech for Unknown Words
	Trigram Tagger Mathematical Background

	Pluralizer
	Sentence Splitting
	Sentence Splitter Heuristics
	Abbreviations
	Characters not allowed to start a sentence
	Interjections
	Numbers

	Spelling Standardization
	Standardization Process
	Spelling Map File Formats
	Standardization Steps
	Interactions with Part Of Speech
	Standardizing Proper Names
	Proper name search algorithm

	Syllable Counter
	Text Segmenter
	Text Summarizer
	Thesaurus
	Verb Conjugator
	Word Tokenization
	Word Tokenization Problems
	Commas in numbers
	Missing whitespace after a period
	Roman numerals

	Processing Text Creation Partnership Files
	Introduction
	The SGML source files
	Origin and nature of the source files
	Typographical changes
	Idiosyncratic features of the source files
	Line breaks
	Superscripts and subscripts
	Decorated initial characters

	The interim P5 version of each file
	Conversion of character entities
	Line-breaking hyphens
	Superscripts and subscripts
	Decorated initial characters
	Gaps

	Post-processing the Abbot TEI files
	Converting ^d to elements.
	Superscripts and subscripts
	yᵉ, yᵗ, and yᵘ
	Common superscripts
	Problematic superscripts
	Converting superscripts to tag form

	The tokenized version
	About tokenization
	The xml:id and its complementary location id
	Tokenization and the apostrophe
	Tokenization and the mdash
	Periods and abbreviations
	Roman numerals
	Back-tick characters

	Edge cases of 'words' in MorphAdorned texts
	Reflexive pronouns
	British monetary terms
	Today, tomorrow, and yesterday

	Changes in the tokenized file
	The tokenized file as the basis for linguistic adornment
	The character of the change log
	Long 's'
	Soft hyphens
	Character entities without corresponding utf-8 code points
	The horizontal bar as the marker of polite elision
	Decorator characters
	hi tags inside words

	Post-processing the tokenized file
	Adding type="unclear" to words containing gap characters
	Other token-based changes

	The process of linguistic adornment
	The pivotal position of the tokenized but not yet adorned file
	Linguistic adornment
	Errata divs

	Output formats
	Native output
	Tabular output
	TEI compliant output
	Other output formats

	NUPos interpGrp
	Placement of notes
	Searching the corpora
	MorphAdorner Server
	Future directions

	Part Six: Programming Examples
	Example One: Adorning a string With Parts Of Speech
	Adorning a string With Parts Of Speech
	Creating a default tokenizer and sentence splitter
	Getting the parts of speech
	Displaying the results
	Putting it altogether

	Example Two: Adorning a string with lemmata and standard spellings
	Creating a default lemmatizer and spelling standardizer
	Adding lemmata and standardized spellings to the output
	Getting the lemma form
	Getting the standardized spelling
	Putting it altogether

	Example Three: Finding sentence and token offsets
	Sample text: Lincoln's Gettysburg Address
	Putting it altogether
	Running the program

	Example Four: Using An Adorned Text
	Sample text
	Generating displayable sentences
	Extracting individual word information
	Word Paths
	Generating XML
	Searching word paths
	Putting it altogether

	MorphAdorner Server
	Plain text services
	TEI XML services

	MorphAdorner Server Installation
	Quick Setup
	File Layout of MorphAdorner Server (MAServer) Release
	Installing and Building MAServer
	Running MAServer In A Servlet Server
	Testing
	License
	Documentation
	Accessing the services

	MorphAdorner Server: Accessing the server programmatically
	How the MorphAdorner Server operates
	Common features of the services
	Support of GET versus POST
	Media format of service responses
	Using WADL to view the service query parameters

	Accessing the server from a web page
	Example: accessing the Lemmatizer service
	Example: accessing the Lemmatizer service using Javascript and Ajax
	Example: accessing the Lemmatizer service using an iframe
	Using an iframe as a fallback when JavaScript is not enabled
	Example: accessing the Tokenize TEI file service

	Accessing the server from a Java program
	Example: accessing the Lemmatizer service from a Java program
	Example: accessing the Tokenize TEI file service

	MorphAdorner Server Services: Adorn Plain Text Service
	Query parameters
	Sample POST form
	Output
	JSON output
	XML output
	HTML output (source)

	HTML output (display)
	Text output
	MorphAdorner Server Services: CorpusConfig Service
	Query parameters
	Sample POST form
	Output
	JSON output
	XML output
	HTML output (source)
	HTML output (display)
	Text output

	MorphAdorner Server Services: Gap Filler Service
	Query parameters
	Sample POST form
	Output
	JSON output
	XML output
	HTML output (source)
	HTML output (display)
	Text output

	MorphAdorner Server Services: Hyphenator Service
	Query parameters
	Sample POST form
	Output
	JSON output
	XML output
	HTML output (source)
	HTML output (display)
	Text output

	MorphAdorner Server Services: Language Recognizer Service
	Query parameters
	Sample POST form
	Output
	JSON output
	XML output
	HTML output (source)
	HTML output (display)
	Text output

	MorphAdorner Server Services: Lemmatizer
	Query parameters
	Sample POST form
	Output
	JSON output
	XML output
	HTML output (source)
	HTML output (display)
	Text output

	MorphAdorner Server Services: Lexicon Lookup Service
	Query parameters
	Sample POST form
	Output
	JSON output
	XML output
	HTML output (source)
	HTML output (display)
	Text output

	MorphAdorner Server Services: Name Recognizer Service
	Query parameters
	Sample POST form
	Output
	JSON output
	XML output
	HTML output (source)
	HTML output (display)
	Text output

	MorphAdorner Server Services: Noun Pluralizer Service
	Query parameters
	Sample POST form
	Output
	JSON output
	XML output
	HTML output (source)
	HTML output (display)
	Text output

	MorphAdorner Server Services: Parser Service
	Query parameters
	Sample POST form
	Output
	JSON output
	XML output
	HTML output (source)
	HTML output (display)
	Text output

	MorphAdorner Server Services: Sentence Splitter Service
	Query parameters
	Sample POST form
	Output
	JSON output
	XML output
	HTML output (source)
	HTML output (display)
	Text output

	MorphAdorner Server Services: Spelling Standardizer Service
	Query parameters
	Sample POST form
	Output
	JSON output
	XML output
	HTML output (source)
	HTML output (display)
	Text output

	MorphAdorner Server Services: Syllable Counter Service
	Query parameters
	Sample POST form
	Output
	JSON output
	XML output
	HTML output (source)
	HTML output (display)
	Text output

	MorphAdorner Server Services: Text Segmenter Service
	Query parameters
	Sample POST form
	Output
	JSON output
	XML output
	HTML output (source)
	HTML output (display)
	Text output

	MorphAdorner Server Services: Text Summarizer Service
	Query parameters
	Sample POST form
	Output
	JSON output
	XML output
	HTML output (source)
	HTML output (display)
	Text output

	MorphAdorner Server Services: Thesaurus Service
	Query parameters
	Sample POST form
	Output
	JSON output
	XML output
	HTML output (source)
	HTML output (display)
	Text output

	MorphAdorner Server Services: Word Tokenizer Service
	Query parameters
	Sample POST form
	Output
	JSON output
	XML output
	HTML output (source)
	HTML output (display)
	Text output

	MorphAdorner Server Services: Verb Conjugator Service
	Query parameters
	Sample POST form
	Output
	JSON output
	XML output
	HTML output (source)
	HTML output (display)
	Text output

	MorphAdorner Server Services: Version Service
	Query parameters
	Sample POST form
	Output
	JSON output
	XML output
	HTML output (source)
	HTML output (display)
	Text output

	MorphAdorner Server Services: Adorned XML to Tabular File
	Query parameters
	Sample POST form
	Output

	MorphAdorner Server Services: Adorn a TEI XML file Service
	Query parameters
	Sample POST form
	Output

	MorphAdorner Server Services: Apply changes to adorned file service
	Query parameters
	Sample POST form
	Output

	MorphAdorner Server Services: Compare Adorned Files Service
	Query parameters
	Sample POST form
	Output

	MorphAdorner Server Services: Extract text from TEI XML file service
	Query parameters
	Sample POST form
	Output

	MorphAdorner Server Services: Extract Sentences Service
	Query parameters
	Sample POST form
	Output

	MorphAdorner Server Services: Move notes in TEI XML file service
	Query parameters
	Sample POST form
	Output

	MorphAdorner Server Services: TEI XML Tokenizer Service
	Query parameters
	Sample POST form
	Output

	MorphAdorner Server Services: Unadorn an adorned TEI XML file service
	Query parameters
	Sample POST form
	Output

	Appendices
	Appendix One: References And Links
	References
	Links

	Appendix Two: Glossary of Natural Language Processing Terms
	Abbott
	Adorned Corpus
	Adornment
	Affix
	Attribute
	Bayes's Rule
	Bigram
	Bound Morpheme
	Chunk
	Collocate
	Corpus
	Data Herding
	Document Coordinate System
	Feature
	Free Morpheme
	Hard tag
	Hidden Markov Model
	HMM
	Jump tag
	Keyword Extraction
	Language Recognition
	Lemma
	Lemmatization
	Lexeme
	Lexicon
	Machine Learning
	Markov Process
	MorphAdorner
	Morpheme
	Multiword Unit
	Named Entity
	Ngram
	NUPOS
	Part of Speech
	Part of Speech Tagging
	Phone
	Phoneme
	Prefix
	Pronoun Coreference Resolution
	Pseudo-bigram
	Sentence Splitting
	Soft tag
	Spelling
	Spelling Standardization
	Stemming
	Suffix
	Supervised Learning
	Tagged Corpus
	TEI
	TEI Analytics
	Text Encoding Initiative
	Trigram
	Unsupervised Learning
	Viterbi Algorithm
	Word
	Word Sense Disambiguation
	Word Tokenization
	Work
	Work Part

