
Monk Datastore Workflow

September 28, 2009

Seven Stages

1. Text selection
2. Text normalization
3. Morphological adornment
4. Bibliographic enhancement
5. Database input generation
6. Database creation
7. Model and programming interface creation

Stage One: Text Selection

● Documenting the American South (113 texts)
● Early American Fiction (111 texts)
● Eighteenth Century Fiction (1077 texts)
● Early English Books Online (691 texts)
● Nineteenth Century Fiction (250 texts)
● Shakespeare (42 texts)
● Wright American Fiction (301 texts)

Total: 806 authors; 2,585 texts; 151,516,845 words

Stage Two: Text Normalization

● Abbot
● Normalizes texts to TEI Analytics format (TEI-A)
● Developed by Brian Pytlik-Zillig and Stephen Ramsay
● Written as a combination of Unix shell scripts, Java, and XSLT

● Process:

1. Harvests schema/DTD from source files
2. Generates XSLT to transform source to TEI-A
3. Validates resultant TEI-A output files

Stage Three: Morphological Adornment

● MorphAdorner
● Adds morphological adornments to TEI-A files
● Developed by Philip R. Burns
● Written entirely in Java
● Provides many facilities beyond basic adornment
● Currently supports English language only

● Process:

1. Reads TEI-A encoded files
2. Splits text into sentences, words, and punctuation
3. Adds morphological adornments for each word
4. Outputs adorned TEI-A files

Sample Adorned Text Fragment

<p>
 <hi rend="sc(1)">
 <w eos="0" lem="Emma" pos="np1" reg="Emma" spe="Emma" tok="Emma" xml:id="
ncf0204-0000550" ord="40" part="N">Emma</w>
 </hi>
 <c> </c>
 <w eos="0" lem="Woodhouse" pos="np1" reg="Woodhouse" spe="Woodhouse" tok="
Woodhouse" xml:id="ncf0204-0000560" ord="41" part="N">Woodhouse</w>
 <w eos="0" lem="," pos="," reg="," spe="," tok="," xml:id="ncf0204-0000570" ord="42"
part="N">,</w>
 <c> </c>
 <w eos="0" lem="handsome" pos="j" reg="handsome" spe="handsome" tok="handsome"
xml:id="ncf0204-0000580" ord="43" part="N">handsome</w>
 <w eos="0" lem="," pos="," reg="," spe="," tok="," xml:id="ncf0204-0000590" ord="44"
part="N">,</w>
 <c> </c>

Stage Four: Bibliographic Enhancement

● Acolyte
● Developed by John Norstad
● Written in Java
● Input data created manually by curators

● Process:

1. Reads adorned TEI-A files
2. Reads curator-prepared bibliographic information
3. Adds curator-prepared bibliographic information to TEI-A files
4. Outputs "bibadorned" TEI-A files

Sample Bibadorned Header
<monkHeader xmlns="http://monk.at.northwestern.edu/ns/1.0">
<tag>ncf-ncf0204</tag>
<corpus>ncf</corpus>
<fileName>ncf0204</fileName>
<title>Emma</title>
<author>
<name>Austen, Jane</name>
<birthYear>1775</birthYear>
<deathYear>1817</deathYear>
<flourished>n/a</flourished>
<origin>British Isles</origin>
<gender>F</gender>
</author>
<circulationYear>1816</circulationYear>
<genre>fiction</genre>
<subgenre></subgenre>
<availability>restricted</availability>
</monkHeader>

Stage Five: Database Input Generation

● Prior
● Generates database input from bibadorned TEI-A files
● Developed by John Norstad
● Written in Java

● Process:

1. Reads files defining NUPOS parts of speech and word classes
2. Reads parameter file defining corpora names and file locations
3. Reads bibadorned files
4. Outputs MySQL database import format files

Stage Six: Database Creation

● cdb.csh, a Unix script, creates a MySQL database by importing the
files created by Prior.

● Build time: 29 hours, 23 minutes
● Database size: 179 gigabytes

● Data could be accessed directly from the database, but ...

● We provide a low-level "middleware" layer to hide the database
details.

Stage Seven: Model and API

● Datastore implements an object model of the data.
● Written in Java.
● Developed by John Norstad.

● Model defines all static Monk objects, their attributes, and
● relationships.
● Model encapsulates and hides datastore implementation details.

Model Example
void topTenNouns (Author author)
throws ModelException
{
Collection<Counter<Author,Lemma>> counters =
Counter.find(Author.class, Lemma.class,
new AuthorCriterion(author),
new MajorWordClassCriterion("noun"));
Counter<Author,Lemma>[] sortedCounters =
Counter.sort(counters, Counter.SortOption.COUNT_CUM_MAIN_DESCENDING);
int k = 0;
for (Counter<Author,Lemma> counter : sortedCounters) {
Lemma lemma = counter.getFeature();
long count = counter.getCountMain(CumKind.CUM);
System.out.println(lemma.getTag() + " " + count);
k++;
if (k == 10) break;
}
}

Possible Extensions To Model Interface

● Add other middleware access interfaces to data

● Examples:

○ Language independent remote calls (Burlap, Hessian)
○ Web services interfaces (WSDL, SOAP, RESTful)
○ Corpus query language like Poliqarp, Xaira

For More Information

The Monk Project web site:

 http://www.monkproject.org

The MorphAdorner web site:

 http://morphadorner.northwestern.edu/

